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Abstract
Recent progress in artificial intelligence is largely attributed to the rapid development of
machine learning, especially in the algorithm and neural network models. However, it is the
performance of the hardware, in particular the energy efficiency of a computing system that sets
the fundamental limit of the capability of machine learning. Data-centric computing requires a
revolution in hardware systems, since traditional digital computers based on transistors and the
von Neumann architecture were not purposely designed for neuromorphic computing. A
hardware platform based on emerging devices and new architecture is the hope for future
computing with dramatically improved throughput and energy efficiency. Building such a
system, nevertheless, faces a number of challenges, ranging from materials selection, device
optimization, circuit fabrication and system integration, to name a few. The aim of this
Roadmap is to present a snapshot of emerging hardware technologies that are potentially
beneficial for machine learning, providing the Nanotechnology readers with a perspective of
challenges and opportunities in this burgeoning field.

Keywords: artificial intelligence, machine learning, neural network models, neuromorphic
computing, hardware technologies
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Introduction

It is believed that hardware is on the critical path for the future
of artificial intelligence in the big data era [1]. State-of-the-art
hardware for machine learning such as the central processing
unit, graphics processing unit (GPU) and tensor processing
unit (TPU) are built upon complementary metal oxide semi-
conductor (CMOS) transistors. Although superior computing
capability has been demonstrated with such hardware, the end
of transistor scaling and the separation of logic and memory
units in the von Neumann architecture limit performance, in
particular energy efficiency, for data-centric tasks. Inspired
by the extremely low power consumption of the human brain,
neuromorphic hardware has been an intensive research topic,
such as those based on emerging solid state devices.

Emerging non-volatile devices can store information
without dissipating power. When organized into a computing
system, they can implement the so-called ‘in-memory comput-
ing’ (IMC) paradigm, in which computation takes place where
the data is stored. IMC avoids the time and energy spent on
data shuttling between memory and logic units in a traditional
digital computer, especially suitable for tasks in which data
needed to be computed are naturally collocated in the physical
memory. Taking advantage of physical laws, such as Ohm’s
law for multiplication and Kirchhoff’s current law for summa-
tion, IMC with a large-scale emerging device offers massive
parallelism as well. Furthermore, the physical computing is
analog in nature and the hardware could interface with ana-
log data acquired directly from sensor arrays, reducing the
energy overhead from analog/digital conversions. Depending
on the properties of the device, such hardware is suitable for
three types of applications [2]. Devices with excellent stabil-
ity can be used to build an inference systemwhere the synaptic
weights have already been trained somewhere else. With high
enough endurance, they may be incorporated into a training

system for scalable algorithms such as backpropagation. For
devices with intrinsic dynamic behavior similar to biological
synapse and neurons, they may be promising building blocks
for spiking neural networks (SNNs) that takes advantage of the
timing in electric pulses for computing.

Extensive simulation has shown that neural networks built
with emerging non-volatile memories will bring orders of
magnitude higher speed-energy efficiencies [3]. However,
experimental demonstration of large systems that can solve
real-world problems has had limited success to date in part
because of the lack of ideal devices that can efficiently imple-
ment the machine learning algorithms or faithfully emulate the
essential properties of synapses and neurons. In addition, the
heterogeneous integration of the devices into massively paral-
lel networks is a major technical obstacle as well.

In the present Roadmap article, we pick up several top-
ics on the emerging neuromorphic hardware and technology
with machine learning applications that we think are partic-
ularly appealing to the readers of Nanotechnology, a com-
munity that is more interested in device and technology rather
than machine learning algorithm and neural network archi-
tecture. The Roadmap starts with FLASH-based hardware
that uses non-volatile transistors and targets inference sys-
tems. We believe this is a good segue from CMOS to emer-
ging devices. Several resistance switching phenomena-based
devices including the phase change, memristor, magnetores-
istance and ferroelectric devices are the subject of the next
few sections, including the materials selection, electrical prop-
erty optimization, device fabrication and circuit integration,
and metrology control, etc. In addition, new materials (such
as 2D materials and organic materials) and technologies (for
example, self-assembly) are also covered. Finally, novel con-
cepts, such as using photons, quantum phenomenon, super-
conductors and the timing of electrical spikes for computing
are introduced.
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1. Floating gate memory-based hardware

Konstantin K Likharev1 and Dmitri B Strukov2

1 Stony Brook University, Stony Brook, NY 11794, United
States of America
2 UC Santa Barbara, Santa Barbara, CA 93106, United States
of America

Status

The present-day revolution in deep learning, triggered by the
use of high-performance hardware, in turn has stimulated
the development of even more powerful digital systems, spe-
cific for machine learning tasks. However, the use of digital
operations for the implementation of neuromorphic networks,
with their high redundancy and noise/variability tolerance, is
inherently unnatural. Indeed, the performance of such net-
works may be dramatically improved using analog and mixed-
signal integrated circuits. In this approach, the key operation—
vector-by-matrix multiplication (VMM)—is implemented on
the physical level in a crossbar circuit, using the fundamental
Ohm and Kirchhoff laws (figure 1(a)) [4].

The main difference between numerous recently demon-
strated circuits of this type is the choice of crosspoint
devices with adjustable conductance G—essentially analogue
non-volatile memory cells, storing the pre-recorded synaptic
weights w ∝ G. Much recent effort has been devoted to
using, in this role, memristors and other novel two-terminal
nanodevices, some of which may enable scaling beyond the
10 nm frontier [5]. However, the fabrication technology of
such devices is still immature for their VLSI integration. It
turns out that quite comparable results may be obtained using
much more mature floating-gate (FG) memory cells.

Up until recently, such devices were implemented mostly
as ‘synaptic transistors’ (figure 1(b)) [4, 6], which may be
fabricated using standard processes available from CMOS
foundries. This approach has enabled the implementation of
several sophisticated systems [6–8]. However, these devices
have relatively large areas (>1000F2, where F is the minimum
feature size), leading to higher interconnect capacitances and
hence larger energy losses and time delays. Recently, it was
proved [5, 9] that much better results may be obtained re-
designing, by simple re-wiring (figure 1(e)), the arrays of the
ubiquitous flash memories with their highly optimized cells.
The areas of the so-modified arrays of the ESF1 and ESF3
NOR flash memories (figures 1(b), (c)), with the latter tech-
nology scalable to F = 28 nm, are close to 120F2 and may be
further reduced to ~40F2. The synaptic weights of FG cells in
the modified arrays may be individually fine-tuned with accur-
acy better than 1%.

This approach was successfully demonstrated on a
medium-scale (28 × 28-binary-input, 10-output, 3-layer,
101 780-synapse) network for pattern classification (fig-
ures 1(f), (g)) [9]. Remarkably for such a first attempt,
still using the older ESF1 180-nm technology, the experi-
mentally measured time delay and energy dissipation (per
one pattern classification) were below, respectively, 1 µs

and 20 nJ, i.e. at least three orders of magnitude better
than those obtained with the 28 nm digital TrueNorth chip
used for the same task, with a similar fidelity. Preliminary
experimental results for the chip-to-chip statistics, long-term
drift, and temperature sensitivity of the network are also
encouraging [9].

Current and future challenges

There are at least two major current challenges to this
approach. First, the implementation of practically use-
ful, general-purpose, reconfigurable neuromorphic processors
have to be employed. Recent architectures addressing this
challenge (e.g. the aCortex [5]) are typically based on rectan-
gular arrays of analogue FG crossbars performing the VMM
function, connected via digital interfaces to the main memory
used for storing input, output, and intermediate data. Such
architecture allows for storage of synaptic weights locally,
thus avoiding performance-penalizing communications with
the off-chip memory. Not surprisingly, the first simulations
of the aCortex, based on experimental data from prototype
VMM circuits, have already shown significant advantages in
energy efficiency over its digital counterparts (figure 2(d)),
which would be even more dramatic with a proper account
of the off-chip data transfer overhead in digital systems.
(Furthermore, simulations have shown that similarly super-
ior energy efficiency may also be reached in mixed-signal
neuromorphic circuits based on industrial-grade SONOS FG
memories [10, 11].) We expect that the forthcoming re-
optimization of the aCortex architecture for speed, using much
larger parallelism, will yield a computational throughput much
higher than that of state-of-the-art digital systems, including
Google’s TPU (figure 2(d)).

The second current challenge is the extension of the FG
approach to larger deep networks. Perhaps the most excit-
ing opportunity for such an extension is presented by the
modern 3D NAND circuits, already featuring up to 96 lay-
ers of FG cells, resulting in an unparalleled areal density. The
current structure of such 3D circuits, with the shared word
planes (figure 2(a)) does not allow one to address each FG
cell individually using the generic VMM scheme shown in
figure 1(a). However, this problem may be resolved using
the time-domain approach [12, 13] illustrated in figures 2(b),
(c). Detailed simulations of a mixed-signal neuromorphic a
Cortex processor based on the time-domain VMM, with 64-
layer gate-all-aroundmacaroni-type 3D-NANDmemory cells,
have shown that due to higher parasitics, its energy effi-
ciency is somewhat worse than that of the 2D a Cortex (fig-
ure 2(d)). On the other hand, the 3D aCortex has a much
(~100x) higher weight storage capacity per unit chip footprint
area—the factor whichmay be crucial for larger neuromorphic
models.

In the long term, the main challenge is to extend the
FG approach to much larger neuromorphic systems perform-
ing cognitive tasks more complex than pattern classification,
including flexible hardware tools for fast modelling of novel
network architectures and brain function models.
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Figure 1. (a) Generic scheme of analog VMM in a crossbar circuit with adjustable crosspoint devices. For clarity, the output signal is shown
for just one column of the array. (b)–(d) Schematic cross-sections of (b) synaptic transistor, and (c) ESF1 and (d) ESF3 supercells. ESF
stands for Embedded SuperFlash NOR flash memory technology. Such technology is based on an array of supercells, with each supercell
hosting two split-gate floating-gate transistors. (e) 2 × 2 fragment of the ESF1 supercell array, highlighting the routing of word lines in the
original NOR flash memory (dashed green lines) and in the array modified for analog applications (solid green lines). (f) Network for
classification of MNIST benchmark images, with 105+ FG cells, implemented in 180-nm technology, and (g) the typical dynamics of the
network’s input signal, the output of a sample hidden-layer neuron, and all network’s outputs, after an abrupt turn-on of the voltage shifter’s
power supply [9].

Figure 2. (a) 3D NAND flash memory circuit consisting of vertical strings of NAND cells. Here, a time-domain VMM operation may be
performed simultaneously with all cells of one x-y layer, selected by applying a smaller voltage to a specific word plane, while keeping all
other word planes biased with larger ‘pass’ voltage. (b) Time-domain VMM scheme, and (c) its timing diagram. On panel (b), the adjustable
current sources describe the FG cells of a particular layer, while the inputs are pulse-duration-encoded enable signals applied to the select
transistors that connect each 3D NAND string to a bit line. (d) Comparison of general-purpose neuromorphic accelerators, evaluated on
inference tasks of comparable complexity, at similar functional accuracy [13].
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Advances in science and technology to meet
challenges

Meeting this long-term challenge would require a large-scale
multi-disciplinary effort focused on synergistic development
of algorithms, hardware circuits, and architectures, notably
including the following aspects:

• development of novel neural models and training
algorithms that would ensure their efficient mapping onto
the co-designed hardware architectures, with an account of
device and circuit imperfections;

• re-engineering of 3D FG memory blocks, that would
allow for simultaneously addressing extended sub-sets of
FG cells, possibly using area-distributed interfaces with
external circuits; and

• re-optimization of FG cells for their use in neuromorphic
circuits, in particular to decrease variations of the sub-
threshold slope, and to reduce the drain-induced barrier
lowering.

Another important task is the development of efficient test-
ing concepts, algorithms, and circuits, which would allow fast

and reliable detection of device and circuit defects and imper-
fections.

Concluding remarks

The first experimental results and detailed computer simula-
tions using reliable device models have shown that mixed-
signal implementations of deep neuromorphic networks, based
on industrial-grade floating-gate memory cells, may be much
faster andmore energy-efficient than their digital counterparts.
Moreover, such FG circuits may have areal density exceeding
that of chips based on 1T1R memristive devices, even with
their more mature technology. We believe that further devel-
opment of the FG approach may lead to neuromorphic VLSI
circuits with unprecedented performance for real-world cog-
nitive tasks.

Acknowledgments

Authors would like to thank M Bavandpour, M R Mahmoodi,
and S Sahay for letting us to include unpublished results, and
acknowledge funding from DARPA, Samsung, Google, and
NSF.

7



Nanotechnology 32 (2020) 012002 Roadmap

2. Materials consideration for emerging devices

Hao Jiang1, ThomasMikolajick2, Damien Querlioz3 andMartin
Salinga4

1 Yale University, United States of America
2 NaMLab gGmbH and TU Dresden, Germany
3 Université Paris-Saclay, CNRS, France
4 Institut für Materialphysik, Westfälische
Wilhelms-Universitét Münster, Germany

Status

History. A decisive part of any machine learning system
is the semiconductor memory. This needs to be brought as
close as possible to the computing function to overcome
the von-Neumann bottleneck. Traditionally, all semiconductor
memories like SRAM, DRAM or EPROM or Flash memor-
ies were based on the principle of charge storage. How-
ever, since the late 1990s the efforts of using several differ-
ent switching effects that utilize specific material properties
have increased [14], putting material science at the heart of
the research activity in non-volatile memories. Ferroelectric
switching, magnetic switching, phase change and memrist-
ive switching based on ion movement have become the focus
point for research and development in new non-volatile semi-
conductor memories (see figure 3). The widely used materials
for ferroelectric switching, phase change and ion movement-
based memristive switching are traditional perovskite-based
(e.g. Pb(Zr,Ti)O3) and recently-discovered HfO2-based fer-
roelectrics, chalcogenide glass materials frequently involving
Ge/Te/Sb and transition metal oxides (e.g. HfO2 and TaOx),
respectively. For magnetic switching devices, the magnetic
layers are usually made with Fe and/or Co while MgO is typ-
ically used as the tunnelling barrier layer in between. Note that
all of the mentioned physical mechanisms with the exception
of ferroelectric switching use a resistance-based readout [15].
While in ferroelectric tunnelling junctions, the material state
can be read out by the resistance as well, the preferred readout
of a ferroelectric is either by measuring the switched charge or
by coupling the ferroelectric to a field effect transistor [16]. In
the last few years, it has been established that the same mech-
anisms might be very well suited to realize functions required
for machine learning. However, while for a semiconductor
memory an abrupt switching with a clearly defined threshold
is most favourable, the optimum switching characteristics
needed for machine learning systems are still an intense field
of research, depending on the targeted application (inference
or learning) and requiring a strong link across the hierarchy
levels starting at the material level all the way up to the sys-
tem level. For all mechanisms mentioned above, the research
activities go back to the 1960s and the first low or medium

volume non-volatile memory products that existed in the
marketplace.

What will be gained with further advances. In a traditional
computing system using von-Neumann architecture, speed
and energy efficiency is becoming limited by the transfer of
data via the memory bus. Therefore, approaches to move the
computation closer to thememory cell itself are highly desired.
The first step can be considered as ‘logic-in-memory’. Here,
the computation is done directly in the memory array by using
the stored data as one input variable and using either a suitable
circuit or a pulsing scheme to realize the logical function and
have the result remain in the memory. All resistive switching
approaches are suitable here and also variants with ferroelec-
tric switching have been shown. In the next step, the memory
device can be used to simplify the calculation of weights in
artificial neural networks (ANNs). Using Ohm’s and Kirch-
hoff’s law, analogue vector matrix multiplications can be
achieved in resistive memory arrays and many lab demon-
strations have already been made using approaches based on
phase change and ionic movement [17–19]. Finally, SNNs
require both to mimic the function of a neuron and a synapse.
Synapses have been achieved using all of the physical effects
shown in figure 3. Neurons were realized based on ferro-
electric switching, phase change and threshold-switching type
memristive devices (e.g. based on NbOx) [15, 20], and using
the non-linear dynamics of magnetization in magnetoresist-
ive nanodevices [21, 22]. Learning-capable hardware is the
most demanding on the material side: intense research is
still required, whereas for synapses an analogue and lin-
ear behaviour (see figure 4) is highly desirable [17]. Both
analogue and accumulative switching were not in the focus
of the traditional non-volatile memory device research and
development.

Status. For a memory array utilizing one of these physical
mechanisms, next to the memory cell, a selection device is
needed to handle disturbances. The simplest version for the
selector device is a MOS transistor, which is used in ferroelec-
tric RAMs, in magnetoresistive RAMs as well as in the avail-
able products using ion movement-based switching. How-
ever, using a MOSFET selector the memory cell needs to be
connected directly to the silicon. For gaining extremely high
densities, three-dimensional architectures, where the cells are
stacked on top of each other, have become very popular since
the first introduction of 3D NAND Flash in 2013. There-
fore, other selector devices have moved into the focus of
research. Threshold switching devices are especially intens-
ively researched and are used in the second-generation phase
change memory (PCM) devices under the name of 3D cross
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Figure 3. Variants of switching mechanisms used for emerging non-volatile memories. (a) In ferroelectric switching the dipoles of a
ferroelectric material are switched by an electrical field. (b) In a magnetic tunnel junction the magnetization of a free layer is switched
between the parallel and anti-parallel orientation towards a fixed reference layer. (c) In phase change memories the phase of a chalcogenide
is switched between amorphous and crystalline using joule heating and (d) in ion movement-based memories a conductive filament made of
metal atoms or oxygen vacancies is reversibly formed and ruptured.
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Figure 4. SET (red curves) and RESET (green curves) of a switch
for use in a synapse for SNN or a weight device for ANN. Ideal
characteristics for the usage as weight is added in blue.

point memory. Ovonic threshold switching based on chal-
cogenides, metal-insulator transition, and metal-ion/oxygen-
vacancy movement-based switching in combination with a
thermal runaway effect as observed in NbOx are all explored
in this context [15].

Current and future challenges

Looking forward, three important research challenges need
to be solved from the material point of view: (I) tuning the
switching and reading characteristics beyond pure memory,
(II) scaling the device density and (III) stability and reli-
ability. Here stability describes the consistent behaviour or
reproducibility of the material stack after writing opera-
tions, not considering the degradation that will happen dur-
ing operation. Reliability, in contrast, describes the degrad-
ation of the cell states during storage (retention), repeated
writing (endurance) or parasitic stimuli (disturbance) of the
cell. Depending on the specific device type, different mater-
ials issues need to be solved. For example, for HfO2-based

ferroelectric devices, wake-up and imprint issues as well as
the improvement of cycling endurance require further stud-
ies; in phase-change-based devices, the material compositions
are observed to fluctuate significantly due to the high tem-
peratures and strong electric fields involved in the switch-
ing processes; for ion movement-based memristive switching
devices, there are concerns over the metal electrode stability
and the trade-off between operation current and state retention;
magnetic tunnel junctions are made with multi-layers of ultra-
thin films, posing a serious challenge to the growth and etching
processes.

With respect to the switching and reading characteristics,
a strong interaction of the material centric device research
with the upper layer circuit and system design is required, as
in a machine learning system, the most suitable device char-
acteristics cannot be defined without looking at the system
performance, and can depend tremendously on the targeted
application. Figure 4 summarizes one important aspect at the
single device level that has been extensively studied in the last
3–4 years for developing learning-capable hardware neural
networks and that illustrates that additional material optim-
ization beyond the established memory function is required
[17]. However, also the interaction between write and read,
stability aspects as well as the ability to integrate the device
into an array or distributed architecture play a crucial role
here. Especially for inference tasks in ANNs it is important
to note that highly parallelized operation is a must. Therefore,
in contrast to traditional memory arrays, where a rather high
read current is necessary to achieve a fast readout, a smaller
read current is indeed desirable. This could be an opportunity
for technologies like ferroelectric tunnel junctions that suffer
from a limited read current when pure memory operation is the
task.

Device scaling has shifted gears in recent years from
purely increasing the device count by reducing the dimensions
towards using the third dimension and more and more levels
per cell. Recently in 3D NAND, 16-level devices (4 bits per
cell) have entered mass production. These trends somewhat
reduce the stringent requirements for device size reduction, but
cannot make it obsolete, as the economics require achieving
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the highest possible functionality per real estate. Nevertheless,
both aspects need to be considered. The device needs to show
the desired behaviour at dimensions in the 10–20 nm regime,
which implies that the films need to be in the nm thickness
range, and it must be possible to stack many layers on top
of each other to achieve the necessary density for complex
machine learning systems. The latter implies that a selector
element not connected to the silicon bulkmust be available and
that suitable deposition techniques to realize high-quality lay-
ers on materials used in standard CMOS processing are estab-
lished.

Stability and reliability are traditionally the main chal-
lenges to bring a non-volatile memory into high-volume pro-
duction. Therefore, magnetic random-access memories, phase
change memories and especially ion movement-based memor-
ies have required about a decade of very intense development
to come up with the first niche products for the general market.
However, with respect to machine learning applications, we
need to handle even more critical issues. If we want to tailor
the current-voltage characteristics to make analogue comput-
ing functions possible, we need to guarantee the stability to
a much higher degree compared to digital or even multi-level
devices where we can rely on the high margin between differ-
ent states.

Advances in science and technology to meet
challenges

The development of semiconductor devices in general and
memory devices in particular has come a long way to deliver
devices with 10–20 nm feature sizes. In terms of film produc-
tion, highly reproducible techniques like atomic layer depos-
ition have enabled the progress in the last 1–2 decades and
can still make a strong contribution to solving the challenges
described above. Especially in scaled down devices we need to

consider that local fluctuations of the composition may trans-
fer to device variability. Therefore, reducing the number of
components in the active switching layer is crucial. In ferro-
electric memories, binary oxides based on HfO2 have become
much more popular compared to the traditional perovskites
[16] which have at least three, but more commonly, four com-
ponents. In phase change devices, even monoatomic solu-
tions are being persued in order to create the ultimate device
[23]. Ultimately, we might need to introduce new physical
mechanisms to master the challenges observed during imple-
mentation.Magnetic random access memories can act as a role
model here with the introduction of magnetic tunnel junctions,
spin-torque transfer, perpendicular magnetization and in the
future possibly spin orbit torque that was introduced in the
last 25 years can finally be adapted by a significant number
of semiconductor foundries.

Concluding remarks

Machine learning makes non-volatile memory functions in
electron devices even more important than they already are
today. However, the specific requirements call for modified
or even completely new solutions. At the end of an era of
charge storage, the prime time for material related switching
effects has finally come, making material development even
more critical than it has been for traditional electron devices
in the past.
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The human brain, which consumes only ~20 W of power
and exceeds the petaflop mark, has been the inspiration for
the next generation of computers [24]. As such, deep learn-
ing and ANNs have been heavily investigated. However,
the learning time and energy usage of these systems are
orders of magnitude short of mimicking the brain. Part of
the reason for this disparity in efficiency is the reliance on
traditional CMOS circuitry elements for simulating neuronal
actions, which requires bulky external memory components
leading to a large device footprint and energy consumption.
With this in mind, researchers are working towards build-
ing highly scalable hardware for ANNs that can replicate
synaptic actions through encoding analog states in their pro-
grammable conductance levels [24]. An ideal synaptic device
should offer low power, high precision, large dynamic range,
fast speed, high scalability, non-volatile retention, good endur-
ance, and low variations among many others [25]. Emer-
ging memory devices such as PCM, resistive random-access
memory (ReRAM), conductive-bridging RAM, spin-transfer
torque RAM, as well as electrochemical devices are all dif-
ferent classes of synaptic devices being investigated [24].
Limited in scope, this work will only focus on PCM and
ReRAM (figure 5), due to their relative closeness to large scale
commercialization.

For ANN applications, the demanding function of vector-
matrix multiplication (VMM) can be efficiently implemen-
ted in a cross-point network [27] (figure 6(a)). The scale
of the network, defined by the number of inputs multi-
plied by the number of outputs, determines its computing
power. Both PCMs and ReRAMs offer high device dens-
ity, due to the inherently small footprint of cross-point
cells. By further scaling these individual devices in sizes,
massive increases in energy efficiency, speed, and network
density can be expected. With these improvements, large
scale integration of ANNs into common technologies can be
achieved, leading to transformative advancements in machine
learning, artificial intelligence, data analytics, internet of
things (IoTs), and even flexible/wearable smart devices, rad-
ically changing the role that technology plays in everyday
life.

Figure 5. Working principles of PCM and ReRAM devices. Figure
(a) shows a cell, the active PCM area is in between a top and bottom
electrode, including a heater to induce melt/quench cycles. As heat
is applied the active channel will change its conductivity based on
the phase of the channel. Reproduced with permission [26]
Copyright 2010, IEEE. Figure (b) shows a typical filamentary
ReRAM, as a writing current is applied to the cell, free ions move
together to form a connection between the top and bottom
electrodes. Reproduced with permission [24] Copyright 2019, John
Wiley and Sons.

Figure 6. (a) Schematics of a crossbar array. (b) Thermal crosstalk
due to Joule heating in adjacent cells. Adapted with permission [27],
Copyright 2015 Nature Publishing Group.

Current and future challenges

One formidable problem encountered in device scaling is
thermal crosstalk, as illustrated in figure 6(b) [27]. PCM
devices need to be elevated to a much higher temperature for
melt/quench cycles [26], requiring a large amount of energy
(10–100 pJ) for switching events. This heating process can
unintentionally perturb the states of adjacent cells through
thermal crosstalk, which will only become more extensive as
energy densities as well as device densities get larger. Simil-
arly, Joule heating is believed to be necessary for facilitating
ion generation and mobility enhancement to form conduction
channels and/or modulate conductive junctions in ReRAMs.
With operation of high-density ReRAM arrays generating
intensive local heating, thermal crosstalk limits the scaling
potential of ReRAM and needs to be addressed through both
material engineering and overall system design to achieve bet-
ter thermal stability.
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Another challenge that is likely to be exacerbated with scal-
ing is device reliability such as endurance, variation, and sta-
bility. Although individual PCM devices exhibit good endur-
ances, the stochastic nature of the melt/quench cycle can
lead to reduced device lifetimes, not only because of large
variation in individual device performances, but also due to
individual device degradations like resistance drift [28]. In
addition, phase separation in the material can cause devices
to stick in either SET or RESET, limiting endurance [28].
Aggressive scaling of PCM devices only serves to aggravate
these issues, as the consistency of individual device compos-
itions becomes increasingly difficult to achieve while keep-
ing commercially plausible deposition rates [26]. Manufactur-
ing high-density ReRAM device arrays with sufficient yield
also becomes difficult. ReRAM fabrication usually needs an
etching metal layer together with multiple functional thin
films. These can generate non-volatile by-products, contam-
inating the critical interface and introducing numerous vari-
abilities, especially in smaller devices. In addition, as most
ReRAMmaterials require an electrical forming step to initial-
ize conductance switching, controlling and eliminating such
high stress processes will be critical for improving process
yield.

Finally, higher interconnection resistances from smaller
electrode linewidths reduce the readability of the conduct-
ance change in a multi-level PCM and ReRAM devices. Small
changes in the read current between these closely spaced con-
ductance levels can easily be shadowed by noise [29]. In this
case, additional compensation would be required to differenti-
ate these subtle differences, which will reduce either precision
or speed, limiting the accuracy and efficiency of a machine
learning hardware based on such emerging devices.

Advances in science and technology to meet
challenges

Optimizing the thermal efficiency of cells is the first
step towards improving the energy efficiency of PCM
devices and minimizing thermal crosstalk. Crosstalk typic-
ally occurs during the amorphization process, with the high
heat required for melting accidentally crystallizing neigh-
bouring amorphous cells. To minimize this risk as device
densities increase, a material with low melting temperat-
ure and thermal conductivity can reduce the amount of heat
spreading during the amorphization step; whereas a high
crystallization temperature will increase the thermal stabil-
ity of the device in the amorphous phase. Most efforts to
increase the endurance of devices are focused on atomic-
level engineering of these materials through the inclu-
sion of dopants, though its viability in the nanoscale limit
is still indeterminate [30]. To then further improve the
endurance of PCM devices, materials with low volume
changes during melt/quench cycles, as well as implementa-
tion of in-situ self-anneal heating during operations should be
investigated [31].

To combat thermal crosstalk in ReRAM systems, small
operational currents has been demonstrated in several sub-
10 nm material systems such as TiOx, TiOx/AlOx, HfO2, and
WOx [29]. Filamentary ReRAM devices typically demon-
strate a constant thermal heating with device scaling because
the size of the filamentary channel remains the same with
reduction in device dimension. However, once the device foot-
print is scaled to be smaller than a typical filamentary chan-
nel (~10 nm), we expect to observe a limited channel growth
and hence a reduction in programming current and Joule heat-
ing. While these observations imply a path to begin to address
thermal crosstalk, building reliable device functionality is still
challenging with higher device variability potentially asso-
ciated with device and current scaling implied in pioneer
works [32, 33].Electrical forming steps can also be elimin-
ated with metal particle doping and other material engineer-
ing techniques. These could be further facilitated with atomic
layer deposition to precisely control thin film composition and
membrane quality [29].

For reducing wire resistance due to narrow interconnec-
tions, low dimensional conductive materials such as car-
bon nanotubes are showing progress. However, fabrication
of high-density arrays remains challenging. Another solution
is through building high aspect ratio metal electrodes with
multilayer depositions, although the process is not currently
commercially viable [32]. Beyond these, a 3D architecture
to was demonstrated by splitting a network into vertically
stacked multi-layer arrays. This configuration tremendously
reduces the wire resistance, as well as its footprint, but
raises integration questions [34]. Finally, alternative fabrica-
tion paths, including bottom up approaches as well as wafer
bonding methods, have been investigated and should to be
continued [32].

Concluding remarks

Hardware implementation of ANNs is necessary to continue
improving their performances. In this vein, several synaptic
devices have been investigated, all with the potential for easy
integration and size scaling. PCM and ReRAM devices are
discussed in this work because of their small footprint, analog
conductive states, and relative technological maturity. Though
both of these classes of devices have been heavily investigated,
properly managing the energy usage, thermal crosstalk, reli-
ability, and endurance of these devices remain as challenges,
especially as these devices attempt to be reduced to the nano-
scale dimensions. To this end, materials engineering, proper
thermal management, and new device architectures are poten-
tial solutions towards these issues.
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Neuromorphic systems based on emerging device arrays per-
form matrix multiplications following physical laws with
high parallelism [29]. However, it is suggested that these
arrays themselves, which implement the synaptic connec-
tions in neural networks, may not suffice the requirement
of an entire hardware computing system, whereas other cir-
cuit components, either implemented by conventional sil-
icon devices or other emerging devices, need to be hetero-
geneously integrated to fulfil the rest of functions. Building
a complete heterogeneous system raises some new design
and manufacturing challenges but would be a necessary step
to achieve large capacity, small latencies and high energy
efficiency.

An overview of the integration roadmap is shown in fig-
ure 7, where different technologies can be heterogeneously
integrated at the device level, the array level or the func-
tion level. First, the integration of other types of devices
can directly enhance the electric performance of these emer-
ging devices in large-scale operations and applications. For
example, the integration of selectors (such as a transistor)
promotes the reliability and the programmability of these
synaptic devices [35, 36], while a heterogeneous design of
synaptic cells could facilitate high precision computing by
minimizing the intrinsic variation effects in devices [18].
Meanwhile, active analog circuit components can be integ-
rated at the array level to program (‘update’) the synaptic
weights stored in the emerging devices (as analog conduct-
ances or capacitances), and/or sense (‘inference’) the output.
Recently, demonstrations with integrated on-chip program-
ming/sensing peripherals have shown encouraging results
[37, 38]. Moreover, the peripherals’ functions are not lim-
ited to accessing individual devices in an array. Neural net-
work functions such as non-linear activations and pooling
can also be physically integrated at the array output and
keep data movement locally. A promising approach would be
harvesting the rich physical properties in emerging devices,
which can potentially offer much improved speed and power
efficiency as compared with the mature silicon technology
[39]. Finally, in favor of emerging edge computing applic-
ations, the computing device arrays can be directly integ-
rated with sensors, actuators, photonics, RF and control
logics circuits with minimum communication and control
overheads thus promise the real-time and low power edge
processing [40].

Current and future challenges

One challenge for heterogeneous integration is the process
compatibility. Many emerging devices involve an exotic
material stack and/or a special fabrication process that require
a high temperature. Therefore, they are sometimes difficult to
be directly integrated with the mature silicon technology in
the back-end processes. A compatible monolithic integration
process generally calls for back-end-of-line (BEOL) compat-
ibility which includes strict requirements on process temper-
atures and selection of materials. While GeSbTe-based phase
change materials and HfOx, TaOx-based resistive switching
materials have a better back-end process compatibility, others
are not. For example, spin-transfer torque magnetic memory
cells use more than ten layers of crystalline ferromagnetic
materials [40, 41], and fabricating lithium-based electrochem-
ical devices require special encapsulation as lithium is highly
reactive with silicon, therefore they are relatively challenging
to be compatible with existing CMOS process. Alternative to
the specifically engineered monolithic integration process, cir-
cuit components could also be fabricated with different sub-
strates through technologies such as low-temperature bonding,
through-silicon via interconnect, flip-chips, etc. For example,
an image sensor array based on ‘III–V’ compounds such as
InGaAs cannot be directly grown on CMOS substrate due
to high process temperature but can be assembled at the
packaging level through low-temperature bonding [42]. How-
ever, these assemble methods still require delicate designs and
sometimes lead to limited inter-module bandwidth caused by
larger parasitic. Lastly, the compatibility of the electrical prop-
erties between different integrated devices is equally import-
ant, which requires a systematic assessment of the require-
ments and the design capacity of each device or circuit com-
ponent. For example, some emerging devices require high
operating voltage and current and thus special design consid-
erations are needed in designing the driving circuits especially
with advanced silicon technology nodes.

Meanwhile, although the new computing paradigm has
already eliminated the movement of weight matrices within
the array, efficient data movement between arrays is still
highly desired for large neural network applications. The
efforts could involve optimized architecture designs such as
local cache or global memory for storing temporal data, shared
data bus or dedicated one-by-one connections between arrays
and tiled arrays for different network topologies [43]. Mean-
while, developing efficient analog circuits for hardware func-
tions, such as non-linear activations and pooling functions,
while keeping all the signals in the analog domain locally for
inter-array communication, could significantly boost the effi-
ciency to the next level if successful.

Advances in science and technology to meet
challenges

First, the performance of the emerging system can still be
largely affected by the device performance. Improvement of

13



Nanotechnology 32 (2020) 012002 Roadmap

Figure 7. Roadmap of heterogenous integration of emerging device arrays.

device performance (with compatible fabrication conditions)
can significantly enhance the computing capability of these
systems, and the figures of merits include the device uniform-
ity, the analog conductance tuning linearity, the data reten-
tion, and the re-programming endurance. Some effective solu-
tions include advances in material engineering [44] or new cell
designs with the integration of mature technologies [18].

Second, there is plenty of room to optimize the peripher-
als circuitry for higher energy efficiency and a smaller foot-
print targeting a specific scenario. The different requirements
of a neuromorphic system, such as low precision and a spe-
cific voltage and current level may call for entirely different
designs. Meanwhile, different array operating methods could
be carefully compared and chosen, such as using pulse width
or pulse amplitude for analog signal representation. In addi-
tion, emerging devices with various non-linear behaviors may
promise completely new designs and novel functions to be het-
erogeneously integrated and replace the conventional silicon
devices and circuits entirely, with each device serving a unique
functionality.

Finally, more efficient data communications can be imple-
mented by new fabrication processes, new architectures, new
array designs and more. For example, fabrication methods and
array designs that reduce the wire resistances of the array can
greatly promote the programming and inference precisions
and mitigate the sneak path issues in passive (transistorless)
arrays. 3D integration [45] of a heterogeneous system is a
favorable option as a lot of emerging devices can be compat-

ibly stacked up (such as oxide-based memristors). The imme-
diate benefit of a 3D system is shorter connection length and
higher density. Different technologies can also be stacked on
top of each other, promising significantly reduced system foot-
print, improved communication bandwidth (2D area interface
as opposed to the 1D edge interface in 2D systems) and exten-
ded functionalities.

Concluding remarks

The heterogeneous integration of different emerging techno-
logies is a key step towards the large-scale system integ-
ration and applications. The performance and efficiency
of the system with all parts combined require careful
designs and optimizations. While promising proof-of-concept
demonstrations were reported, challenges still exist in the
integration process development, electrical compatibilities
optimization and architectural designs for minimized data
movement/conversion in modern neural networks. Extens-
ive research efforts are underway to develop new emerging
device types with unique functionalities and smart circuit and
array design with 3D integration are being investigated to
make the system more efficient. The heterogeneous integra-
tion of a wide spectrum of emerging devices, with new array
and architecture designs promises the disruptive computing
power for future machine learning and artificial intelligence
systems.
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While the need for mobile and fast computing in a smart soci-
ety is ever growing, the semiconductor industry has been fail-
ing to exploit the power and efficiency provided by device scal-
ing. Currently, we are witnessing a divergence of paths for
future computing, with non-von Neumann architectures that
are anticipated to significantly disrupt traditional CMOS tech-
nology. For example, commercial digital AI chips (TrueNorth
and Loihi) developed by IBM and Intel, respectively, colloc-
ated the memory and processing units for a reconfigurable
design. Recently, memristor-based analogue computing has
been the focus of intensive research. Memristors arranged in
a crossbar array provide a two-dimensional representation of
a neural network, and have the advantages of greatly maxim-
izing the device area density (2N lines and N2 devices) and
unifying logic and memory for IMC. analogue or hybrid chips
based on this network have proven to be extremely efficient
(computing power efficiency up to over 10TOPS per watt)
for pattern classification or online training of neural network
algorithms [29]. At a fundamental level, this novel hardware
can act as a dot-product engine for running VMM operations,
which are very frequently used in deep learning algorithms
[35].

Since the first memristor device was made in HP Labs
in 2008, different patterning techniques have been employed
for memristor crossbar fabrication. Electron beam lithography
(EBL) is more frequently used for patterning crossbar arrays
at high resolution, but over a relatively small area [46].
Newly emerging techniques, including extreme ultraviolet
(EUV) lithography, nanoimprint lithography (NIL) and dir-
ected self-assembly (DSA), have been listed in the Interna-
tional Roadmap for Devices and Systems (IRDS) as advanced
lithography techniques for device fabrication at the 3–5 nm
technology node (figure 8) [47]. So far, direct templating with
DSA (coupled with NIL) for the fabrication of bit patterned
media with a crossbar structure has achieved a device density
greater than 1T inch−2 [48]. The high-throughput advanced
lithography techniques (e.g. EUV) will penetrate into the man-
ufacturing once the market size and the fabrication cost are
leveraged. For reference, in figure 8 we have listed the estim-
ated device density of passive crossbar arrays fabricated with
the corresponding processing strategies. Considering the foot-
print of accessing devices, the cell area with respect to dif-
ferent architectures would be 8- or 4- fold larger: ~8F2 for
one-transistor, one-resistor architecture (1T1R), 4F2 for one-
selector, one-resistor architecture (1S1R), where F is the half
pitch.

Current and future challenges

The continued downscaling of nanoelectronic devices imposes
ever-more stringent requirements on the strategy used to
achieve ultra-small feature size while maintaining low
defectivity. Along with the previous success of memristor-
based AI chips, it is becoming imperative to continue to
increase the crossbar density for better network performance.
The main challenges experienced in the scaling process of
crossbar fabrication include the selection of proper processing
strategies for sub-10 nm patterning, the increase in integration
difficulty, and the potential for performance degradation of the
miniaturized devices.

Current chip-level crossbar arrays are made at the µm level
with conventional photolithography. Direct writing tools, such
as EBL, are able to deliver high-resolution patterning, but
are not ideal for mega-scale crossbar fabrication due to their
extremely time-consuming writing procedure [49]. Further-
more, the small critical dimension of a crossbar causes the
performance of the final device to be vulnerable to process
variation. Therefore, it is critical to simultaneously optim-
ize all the processing steps to reduce the defectivity and to
enhance the pattern transfer uniformity. In addition, system-
level integration requires reliable 3D integration of crossbar
arrays with underlying CMOS circuits. Direct fabrication of
crossbar arrays on a foundry-developed CMOS chip should
guarantee precise alignment and a low thermal budget [50].

Another big challenge associated with crossbar scaling is
the increasing density of local interconnects. The resistance
of these non-ideal interconnects increases as the size shrinks,
causing a significant voltage drop across the array. This phe-
nomenon will severely disturb the functionality of memristor
crossbar arrays, resulting in insufficient power supply on indi-
vidual devices and a large error rate during write/read opera-
tions [51]. Other problems includemore device-to-device vari-
ation and current interference between more densely packed
neighboring cells, known as the sneak path current problem
[52]. Although there is no description of the benchmark for
defect density in the literature, the essence of neural network
indicates that the defectivity level of a crossbar array can be
higher than it can be for the logic chips, which are permitted
less than 100 defects per cm2 [29]. The strategies to realize
high-throughput manufacturing of large-scale, high-density
crossbar arrays and integrated systems rely on the continued
efforts to explore new patterning methodologies, as well as a
collaborative effort between academia and industry.

Advances in science and technology to meet
challenges

Both academia and industry are making long-term endeavors
to realize the fabrication of large-scale, high-density
crossbar arrays for production. EUV is a commercial-
ized, high-resolution lithography technique for high-volume
manufacturing in the semiconductor industry, which greatly
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Figure 8. Tentative roadmap for crossbar density, along with logic and memory device scaling, according to the IRDS.

Figure 9. Strategies for memristor crossbar arrays fabrication and integration with underlying CMOS devices.

simplifies the patterning process compared to 193i litho-
graphy using multiple patterning steps, but the cost of EUV
remains high up to now [47]. For research, low-cost litho-
graphy techniques, such as NIL and DSA, can also enable

high-resolution patterning. As a direct contact lithographic
method, NIL has easily overcome the optical limits of con-
ventional photolithography and the proximity effects observed
in EBL. The NIL molds can be used repeatedly, allowing
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mass production of a crossbar structure in a highly cost-
effective way. To date, NIL has been successfully applied
in the direct fabrication of memristor crossbar arrays on top
of a foundry-made CMOS chip with optimized planarization
techniques [50].

The recent advances in DSA of a block copolymer and sub-
sequent pattern transfer are readying this technique for the fab-
rication of memristive devices. The assembled block copoly-
mer thin film can function as an etching mask to transfer the
pattern to the underlying layers. DSA is suitable for making
either the electrodes or switching layers for crossbar memrist-
ive device arrays. Electrode fabrication can be realized in a
metal lift-off process or a liquid-immersion metallization pro-
cess. The metal elements can vary from Pt to Cu, Co, Ni, or
others. DSA of cylinder-forming block copolymers (e.g. PS-b-
PMMA or PS-b-P2VP), combined with sequential infiltration
synthesis (SIS) offers an efficient way of patterning the switch-
ing layer for crossbar arrays. In SIS, a metal oxide precursor
diffuses and selectively binds to reactive sites in the microdo-
main of the polar block [53]. SIS in combination with DSA,
has been used to convert assembled block copolymer domains
into oxides such as TiO2, Al2O3, ZnO, ZrO, HfO2, and WO2.
With accurate control of both composition and uniformity, this
combined process helps to address the leakage current issue
by confining the conductive filament in nanometer-sized chan-
nels. By exploring various processing strategies as shown in
figure 9, it is expected that the key obstacles of device down-
scaling and system integration can be overcome, which paves
the way for industrialization of crossbar fabrication in the near
future [51].

Concluding remarks

Memristive crossbar array devices will undergo a miniatur-
ization process similar to that of the transistor as they are
developed, so to implement the neuromorphic computing or
memory, and they will simultaneously experience a reduction
in power consumption and cost. Alternative lithographic tech-
niques such as NIL and DSA fit in perfectly with the fab-
rication of high-density, periodic, and defect-tolerant crossbar
arrays. These low-cost manufacturing methods are fully com-
patible with current semiconductor manufacturing processes,
such that they are suitable for a BEOL process in the integ-
ration of CMOS and crossbar arrays. In the future, 193i, or
even EUV, may be used for high-throughput manufacturing of
memristor-based AI chips. Combining lithography with stamp
transfer or inkjet printing, we are able to create a crossbar
structure on flexible substrates. The adoption of large-scale
memristor arrays in the next generation of computing in the
artificial intelligence of things era should provide exceptional
performance.
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The current state of the art in electronics manufacturing is
driven by achieving low defect rates, high levels of device-to-
device uniformity, and binning integrated circuits by quality.
As the industry pushes digital logic to below 5 nm in tran-
sistor channel length, new lithographic methods are needed to
facilitate that scaling. EUV Lithography and DSA are among
such methods, but suffer from intrinsic limitations, such as
stochastic photon illumination or assembly defects, respect-
ively. These push the defect rates (of open connections, shorts,
and other circuit-killing defects) to above the 0.01 cm−2 dens-
ities required for economical semiconductor manufacturing.
Enabling logic to follow memory into the backend-of-line
can relax feature-size-inducedmanufacturing problems. At the
same time, this introduces new challenges in the 3D integra-
tion, particularly if similar areal densities are required. This is
especially true in systems requiring new, CMOS compatible
materials which suffer from defects absent in single crystal
silicon.

Recent advances in neuromorphic computing, meanwhile,
offer a bridge to a new era of ultra-dense, 3D-integrated com-
puting architectures. These are largely based on a new suite
of materials and manufacturing methods long thought to be
unacceptable for digital manufacturing. Neuromorphic archi-
tectures, especially those based on nanodevicememories, have
the benefit of massive redundancy in the number of possible
solutions to a problem. This makes it possible to find solu-
tions which either disregard or actively compensate for under-
lying hardware issues. The opportunities afforded by the low-
precision, defect tolerant nature of neuromorphic computing,
still an active topic of study at the algorithmic level, are begin-
ning to manifest on the hardware and manufacturing stages as
well.

Neuromorphic computing, therefore, offers a set of design
freedoms that enable a radical departure from the typical
manufacturing constraints of the past. While the error rates
for conventional digital logic in CMOS are astronomically
small, less than <10−10 based on the requirement that bil-
lions of transistors function on a single integrated circuit, the
yields of even currently existing technologies, such as 3D-
NAND, which often ship with a small percentage of defect
memory blocks, suggests defectivities orders of magnitude
higher near 10–5. Emerging technologies like carbon nanotube

field effect transistors and resistive switches have been imple-
mented in working demonstrations suggesting defectivities
less than 10–4, but nevertheless may not achieve significantly
higher levels of perfection [45, 54]. These emerging techno-
logies may be able to find profitable new avenues for growth
in emerging neuromorphic architectures as memory and logic
merge.

Current and future challenges

Analog deep neural networks (DNN) are based on dense nan-
odevice memories, but these systems are prone to defects both
from the nanodevices as well as from variations in the under-
lying CMOS. In the long term, in situ training—training the
network on the hardware in which it is deployed—will yield
systems resilient to these issues. In in situ training, defects
that would nominally affect inference—that is, the classific-
ation action taken by the hardware—will be actively com-
pensated for by the training routine. Several studies suggest
that systems trained in situ can tolerate defectivity rates as
high as 50% in missing synapses (significantly less tolerance
for stuck-on devices, closer to 10%) and 0.1% to 10% in
problematic neurons depending on the degree of redundancy,
with small networks suffering catastrophically from missing
neurons and large networks being robust [54–57]. These rates
are theoretically well understood, as the pruning of synapses
and neurons is a well-established means of network training
[58]. But other types of device non-idealities, namely in the
non-linearity, stochasticity, and device non-uniformity of the
weight update, have so far made in situ training of nanodevice
hardware impractical [18].

In the near term, dense nanodevice memories are most
likely to be trained ex situ—that is, a model is trained on an
external computer, and then transferred to a memory array for
ultra-low energy inference in the field. While this circumvents
the need for in situ training, the device must reproduce an
externally generated model which reduces its defect tolerance.
Increasing defect rates cause a monotonic decline in fidelity of
an ex situmodel, and synaptic defectivity rates as low as 0.2%
have led to a detectable departure from normal accuracy [59].
Some application spaces can tolerate this decline in accuracy
and will be naturally resilient to even high rates of defectiv-
ity. Critical applications, such as systems in self-driving cars
or flight control, cannot, particularly since model reproducib-
ility, in addition to overall network accuracy, can be a crit-
ical system requirement. Even if random defects increased the
measured network accuracy, the potential for unpredictable
behaviour may limit the implementation of networks to ones
that accurately reproduce a reliably field-tested model. Such
considerations may reasonably push the levels of acceptable
defectivity orders of magnitude lower, to less than 10–4.

Non-idealities in the underlying CMOS, such as in the
amplifier gain for analog-to-digital converters, can likewise
introduce pernicious, fixed errors in a neuromorphic com-
puting system. While these are manageable in an in situ
tuned system, they become difficult to resolve in ex situ
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Figure 10. Defectivity ranges, tolerances, and mitigation actions for different operational modes. Defectivity ranges are approximate and
sensitive to degree of redundancy, network design (for networks) and the precise technology and fabrication routes (for device technologies).

trained hardware [60]. Traditionally this issue has been man-
aged in digital systems by maintaining large margins between
logical 0 and 1. Limiting the dynamic range of nanodevice
arrays, by restricting them to digital or binary neural net-
works, may be a practical solution to this problem in the
near-term [59].

Advances in science and technology to meet
challenges

Neuromorphic computing possesses an immense potential to
disrupt conventional fabrication approaches to integrated cir-
cuits. To realize that potential, the significant underlying chal-
lenges we outlined above must be systematically addressed.
Ex situ inference systems are an important emerging applica-
tion space, and researchers should continue to investigate net-
work implementations that offer a measure of error tolerance
in that arena. Quantized or binary neural networks, along with
methods such as the introduction of row and column redund-
ancy, are naturally resilient to nanodevice and CMOS vari-
ations and show great promise [61]. Redundancy is already
successful in modern memory architectures, especially those
based on NAND flash with intrinsically high defect levels.
Fundamental investigations into neural network theory, partic-
ularly on the specialized training of networks to manifest resi-
lience to hardware defects, should also be emphasized; these
approaches may be the fastest way of bringing such networks
to market [59]. A framework for understanding the reliabil-
ity of imperfectly reproduced machine learning models in ex
situ neuromorphic hardware is of especially critical import-
ance, particularly in applications where human safety could
be jeopardized.

In the longer term, the problem of how neuromorphic
systems can perform online, in situ training must be
resolved. Whether through the development of machine learn-
ing training algorithms which are resilient to underlying
device limitations, or through the development of more

perfect devices, this problem is central to unlocking the
full potential of neuromorphic computing [60]. Due to the
tight requirements currently proposed for nanodevice per-
formance, only synapses composed of more than one type
of device have thus far been capable of achieving online
training at a fidelity that matches software-trained systems
[18]. In addition, important advances in machine learning
may be necessary to ensure the reliable, traceable perform-
ance of in-situ trained networks, so that unpredictable net-
work behaviour can be avoided or accounted for. Such chal-
lenges do not exist in accurate recreations of ex-situ trained
networks.

As these problems are solved, the corresponding relaxation
of defectivity constraints will allow us to aggressively scale
new neuromorphic systems. That scaling will be driven in part
by materials and manufacturing methods (like EUV and DSA)
which are cheaper and more easily integrated in the backend-
of-line, at the expense of lower yield or reliability. Current
efforts to perform IMC represent a critical step in the develop-
ment of these kinds of future systems; the N3Xt architecture,
which proposes to use nanotubes (CNFETs) in the backend for
digital logic, is a timely example [45].

Concluding remarks

The native defect tolerance from neuromorphic architectures
offers new opportunities to integrate old and new techno-
logies into semiconductor manufacturing. However, ex situ
trained systems on the present technology horizon often
have insufficient reliability to meet the tight requirements
needed in important application spaces. As robust systems
for inference are deployed and barriers to in situ training
are reduced, increasingly defect tolerant systems will become
achievable. Ultimately, as neuromorphic technology matures,
a rich and diverse toolset of materials and manufacturing
methods will herald a new generation of dense, 3D-integrated
computing.
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Status

The local redox chemistry and redistribution of defects, such
as oxygen vacancy concentrations or metal cations in oxides
under high local electric fields (>1 MV cm−1) drive the fila-
mentary or interfacial switching mechanisms that govern two-
terminal memristive devices [62, 63]. Many switching layer
materials actually exhibit transport characteristics of both
switching mechanisms, often dictated by the choice of metal
electrode, operation (bias vs. switch speed) and its work func-
tion difference with the oxide [64, 65]. The ability to identify
the shape, size, and location of conductive filaments or the
width of electrochemically active regions along the electrode-
insulator interface remains critical to controlling the power
consumption, uniformity, and endurance of switching cycles
in metal-oxide-metal structures used in memristive and neur-
omorphic computing applications.

This section surveys recent advances in real-time electron
microscopy, scanning probe microscopy, and vibrational spec-
troscopy techniques, alongwith examples of powerful pairings
that yield unprecedented access to the governing mechanisms
inmemristive devices and films. The current state ofmetrology
in memristive studies is quite exciting; high-resolution trans-
mission electron microscopy (structural) and electron spec-
troscopy (chemical) are now routinely performed using in
situ stages capable of providing thermal and electrical stimuli
to track redox processes and filament evolutions [66]. Con-
ventional conductive atomic force microscopy has evolved
from purely two-dimensions to three-dimensions using hard,
conductive diamond probes, enabling the study of factors
that directly affect filament morphology [67]. Time in oper-
ando absorption spectroscopy collects changes in cationic-
oxygen anionic vibrational modes and couples modes asso-
ciated with charge carrier vacancy formation with respect
to field strength or pulse duration [68]. Studies aiming to
understand the complex interactions between various redox-
processes, defect chemistries, and near order-lattice structure
under locally enhanced electric fields in the switching oxide
layer thus require concurrent development of equally complex
characterization methodologies to clearly define and decouple
transport phenomena on spatial, temporal, and physicochem-
ical levels.

Figure 11. (top) Electrical, chemical, and thermal contributions to
drift of mobile species in memristive systems (adapted from [63]).
(bottom) Common families of in situ techniques for mixed ionic
electronic conducting systems, in situ transmission electron
microscopy (structure, chemical species), in situ Raman
spectroscopy (structure, chemistry), and in situ scan probe
microscopy (potential, current, vacancy concentration).

Current and future challenges

Electrical stimuli produce three major changes in memristive
materials: electrochemical reactions that can produce mobile
ionic species, gradients that drive ionic (and in some cases
electronic) migration, and local thermal gradients caused by
Joule heating. Fully understanding memristive phenomena
typically involves establishing (i) the type(s) of ionic charge
carrier species [69]; (ii) the location of ionic species; (iii) the
type(s) of concentration gradient(s) driving their migration;
(iv) the manner by which they migrate, and (v) the valence
state of the active species. As seen at the top of figure 11,
mobile ionic species can be driven by either electrical potential
gradients, ionic concentration gradients, and/or thermal gradi-
ents occurring during the switching process. Multiple mechan-
isms contribute to the overall switching process within a given
material system. Decoupling factors that direct switching
towards either more field-dominated or thermally-dominated
processes, or the relative contributions of cation and anion
transport, requires an equally complex suite of characteriza-
tion tools that apply multiple stimuli in situ or in operando.

Microscopy and spectroscopy methods have evolved
recently to be performed under simultaneous electrical and
either thermal, chemical, or mechanical stimuli in real-time.
These techniques work synergistically to address the primary
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issues (i)–(iv) outlined earlier. Scanning transmission electron
microscopy (STEM)-based energy dispersive x-ray spectro-
scopy, high-angle annular dark field (HAADF) imaging, and
electron energy loss spectroscopy performed under applied
perturbation yield information on filament morphology, local
composition and temporal information regarding switching.
In operando Raman spectroscopy provides near-order

structural information within memristive films and insights
on defect types and their association degrees that define the
switching speed and performance [70–72]. Information can
be collected by in operando Raman spectroscopy as a func-
tion of dopant concentrations and modulated space charge or
strained regions adjacent to concentrated electric fields and
in case of wavelength modulation towards various interfaces
[73]. Unlike in operando x-ray diffraction, Raman spectro-
scopy allows one to describe properties that are likely caused
by local lattice distortions and/or interacting defects that can
develop in the presence of either extrinsic (dopant-induced)
or intrinsic (oxygen) vacancies under bias. High temperature
scanning surface potential microscopy (HT-SSPM) enables
the conversion of contact potential difference to vacancy pro-
files using classic semiconductor analysis. We note, use of in
situ x-ray techniques such as hard x-ray photoelectron spec-
troscopy or ambient pressure XPS also have signification trac-
tion, but are not covered fully here due to scope. Combining
highly controlled testing environments with advanced mul-
tiprobe SPM will be necessary to effectively decouple the
effects of electric field, Joule heating and chemical potential
gradients in driving resistive switching. State-of-the-art time-
resolved pump probe techniques with high temporal resolu-
tion of <1 ps show enormous promise in resolving ultrafast
physicochemical processes in situ, but have yet to be applied
to memristive applications.

Advances in science and technology to meet
challenges

Understanding the role that oxygen and oxygen vacancy
dynamics play in memristive behaviour necessitates atomic-
scale dynamic studies. Recent work utilizing STEM HAADF
imaging of lanthanum strontiummanganite (LSMO) thin films
showcased the ability to directly correlate local structural
changes and phase transitions to the high-resistance state
(HRS) and low-resistance state (LRS) (figure 12(A)) [74]. This
in situ TEM technique enables direct mapping of character-
istic structural variations to resistive switching curves, such
that areal fractions of high-resistance brownmillerite (green) to
low-resistance perovskite (orange) phases are made as a func-
tion of applied bias (figure 12(B)). Oxygen vacancy distribu-
tions and local ordering at domain boundaries ultimately dic-
tate phase transitions and domain migration. Electro-thermal
modelling (figure 12(C)) has been used to determine the extent
by which local heating under the tip while applying bias redis-
tributes oxygen vacancies through migration away (negative
bias) or towards (positive bias). Such in operando STEM-
HAADF led studies will ultimately lead to refinement of
the reversible control over vacancy migrations in complex

Figure 12. (A) In situ STEM-HAADF imaging of LSMO during
two-step switching, with the HRS brownmillerite (2) and LRS
perovskite (4) phases present. (B) Areal fractions of the two phases
present in LSMO from STEM imaging. (C)—Electro-thermal
modelling of the temperature and vacancy distributions under the
tip. Per CC 4.0 License of [74]. (D) A schematic illustration of the
STFO-based electrochemical cell for in operando Raman. (E), the
Raman spectra of the reduced (above) and oxidized (below) STFO
due to in operando oxygen pumping. (F)—Raman intensity plot as a
function of oxygen non-stoichiometry. Reproduced from [75] with
permission from Wiley. (G) A schematic illustration of the
HT-SSPM measurement configuration performed at 500 ◦C in situ.
(H) An illustration of the band offset determined by the CPD
measured to ultimately yield vacancy concentrations. (I) Surface
potential profile collected in situ at 500 ◦C (red) and resulting
oxygen vacancy concentration distribution across the STO/YSZ
multilayer oxide films (black). Per CC 4.0 License of [77].

oxide thin films. Recently new tools have been developed
with assigned Raman modes for spectra of Sr(Ti,Fe)O3−y thin
films used in memristive devices to control the oxygen non-
stoichiometry and defect information via in operando cells
using an electrochemical oxygen pump. As discussed above, a
key challenge for perovskite thin films is to be able to monitor
changes in oxygen stoichiometry or equivalently the valence
state of redox active cations for memristive devices to con-
trol and describe the switching kinetics. This has been challen-
ging so far as gas phase exchange does not necessarily allow
for a sufficiently high accuracy in oxygen titration to alter
and probe defects. In a recently reported method an oxygen
breathing mode connected to Fe4+ redox-state can serve as
a convenient ‘marker’ to probe the local environment around
Fe4+ and is thereby useful to describe both the Fe redox
state and oxygen non-stoichiometry in Sr(Ti,Fe)O3−y solid
solutions. In principle such easy lab-accessible in operando
tools can be extended to monitor switching redox-processes
and dynamics for much more oxide-based resistive switch-
ing material systems, gaining valuable insights in particular
on light elements such as oxygen, lithium or others [75]. Also,
Raman spectroscopy can probe (besides crystalline) switch-
ing oxides amorphous films, often applied in low temperature
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processing of resistive switching devices [62, 76]. Studying
interfacial phenomenon across complex oxide heterostruc-
tures, especially vacancy dynamics, requires in situ methods
that resolve properties with nanometer-resolution while oper-
ating in the electroactive regime, which often includes elevated
temperature. Due to significant technical hurdles, in situ SSPM
under operating conditions or so-called in operando meas-
urements, have only been recently introduced for studies of
electroactive oxides. Recently in situ surface potential profiles
of STO/YSZ multilayer cross-sections were collected at high
temperatures (500 ◦C; figure 12(G)) and directly converted
to spatial vacancy concentration distributions (figure 12(H))
[77]. The profile displayed a region heavily depleted of oxy-
gen vacancies adjacent to the film/substrate interface, provid-
ing tremendous insights into the effects of energetic depos-
ition on the local defect distribution within the substrate
region.

Concluding remarks

Resistive switching phenomena inherently comprise multiple,
complex physiochemical redox-processes and mobile species
under bias. In operando microscopy and spectroscopy tech-
niques that apply multiple stimuli and measure the subsequent
structural or transport response will ultimately lead to the sep-
aration of the various components, electric fields, chemical
and thermal gradients andmobile species that governmemrist-
ive behavior. The techniques described above not only estab-
lish an understanding of stability and rapid switching between
two extreme states for memory applications, but are also cap-
able of observing finer, more subtle variations such as the

electronic state affecting the LRS magnitude, pulse response
and stability, the control of which is paramount to improv-
ing machine learning and neuromorphic applications. Future
studies will need to pair real-time and time-resolved char-
acterization [78] with similarly advanced modelling meth-
ods to ultimately decouple the interlaced mechanisms that
drive mobile species, and subsequently set forth design prin-
ciples within memristive materials systems and desirable car-
rier kinetics and thermodynamics. Such insights will provide
deeper feedback to which electrode-oxide interfaces, het-
erointerface thickness and sequence, or stoichiometry is neces-
sary to optimize the concentration and location of defects crit-
ical to memristor operation, including power consumption,
speed, and endurance. Accelerated advancement of in oper-
ando characterization will broadly draw from the synergy with
concurrent developments in energy storage, electrocatalysis,
and photocatalysis studies that require similar dynamics of
mobile charged species.
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Analog computing for deep learning has received tremendous
research interest and shown significant progress in recent years
[79, 80]. This emerging computing paradigm can be imple-
mented using dense crossbar arrays of non-volatile memory
(NVM) devices, to encode weights, and locally perform com-
putational tasks, such as matrix multiplication and weight
update, in a parallel manner and in O(1) time complexity.
Such a crossbar array architecture of DNN is expected to
achieve remarkable acceleration of DNN training and infer-
ence with significantly lower power. The realization of such
improvements is challenged by achieving proper NVM char-
acteristics with analog-like conductance tuning capability and
acceptable variabilities [80–82]. Although training could be
intrinsically more immune to device variabilities than infer-
ence due to weight updates based on backpropagation of
errors, the devices still need to achieve a certain level of uni-
formity in the training in order to maintain the same level
of accuracy as that achievable by the digital-based floating-
point counterparts [79, 80]. In this section, we focus on two
promising NVM candidates, PCM and ReRAM, and review
the solutions to address their variability challenges for train-
ing and inference.

The state-of-the-art PCMs are based on chalcogenide
materials (most commonly used is Ge2Sb2Te5) that could be
switched between HRS (amorphous, reset) and LRS (crystal-
line, set). By controlling the programming current and dur-
ation, gradual conductance changes of the PCM cells can
be achieved in a continuous manner, making them suitable
for analog-computing. The operation of ReRAMs is typically
associated with the changed strength of conductive filaments
as a consequence of oxygen vacancies diffusion. The conduct-
ance of ReRAM devices can be tuned in an analog manner
through shrinking (reset) or growing (set) the size of the fila-
ments. Recently, both PCM and ReRAM have demonstrated
promising results from individual devices and even crossbar
arrays [35, 81, 83].

Current and future challenges

The analog switching characteristics of PCM and ReRAM
are typically investigated by evaluating the changes of

conductance (G) in response to consecutive voltage pulses
(figure 13) and large variations can be observed while
measuring these devices. Using a gaussian-process-regression
(GPR)-based methodology, Gong et al, studied variability
among 1000 PCM devices that were fabricated in a 90 nm
technology process. They found both device-to-device vari-
ation and the inherent randomness during crystallization pro-
cess to be significant contributors to the total variability [82].
Based on GPR, they found that the inherent randomness in
those PCM devices and ReRAMs to be comparable; how-
ever, neither could pass the requirements needed for incur-
ring less than 0.3% error penalty than the floating-point res-
ults, indicating inherent randomness remains to be a common
challenge for both PCM and ReRAM [79, 82]. For ReRAM,
the origin of randomness has been tied to the very nature of its
operation. The forming, set, and reset operations in ReRAM
are electrically- and/or thermally-activated transport mechan-
isms that create or destroy conductive filaments inside the thin
oxide layer between the terminals of a ReRAM cell. Such
mechanisms are intrinsically stochastic, resulting in large vari-
ations between different devices (device-to-device (D2D) vari-
ations), and even in different cycles of the same device (cycle-
to-cycle (C2C) variations), as illustrated in figures 14(a)–(b)
for titanium-oxide-based devices, in which large variations can
be observed in the forming, set, and reset threshold voltages,
as well as on the resistance of the HRS and LRS [84]. Note that
whereas the HRS variations are typically larger than those of
the LRS, the encoding used in analog computing is based on
the device’s conductance, rather than its resistance. As a result,
the variations of the encoded data corresponding to the HRS
is effectively smaller than those of the original, resistance-
encoded HRS. The D2D and C2C variations not only impose
challenges on the design of the peripheral circuitry and on the
endurance of the cells, but also makes it difficult to model
the behaviour of a ReRAM cell. Whereas a basic switching
model can be used for some applications (e.g. single-level
cell memories), many other applications require a (still elu-
sive) model to describe the dynamic and analog behaviour of
ReRAM cells, as well as to predict the complex interactions
between multiple devices, e.g. to model the forming procedure
of a ReRAM cell, or the interaction among multiple ReRAM
cells in a crossbar.

Advances in science and technology to meet
challenges

Focused efforts have been made to address challenges related
to device variability. Approaches span innovation in materials,
device design, circuit, and architectural improvements. Kim
et al, reported remarkable reduction in programming noise
and resistance-drift using confined PCM and matching with
devices that include a metallic liner [85]. Others have pursued
circuit or architectural innovation to address non-idealities of
PCM devices. Sebastian et al [81] propose a mixed-precision
training approach where the forward and backward passes as
well as the weight updates are performed on low-precision
NVM devices whereas the gradient accumulation is done on a
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Figure 13. Analog switching behaviours of ReRAM (a) and PCM
(c): variation on top of the noise free signal can be attributed to the
stochastic characteristics when the filament of ReRAM is changed
(b) or when the amorphous region of the PCM is crystallized (d).
The figure is adapted from [82] under the term of creative common
license: https://creativecommons.org/licenses/.

high-precision digital CMOS unit. They reported 98% training
accuracy after 20 epochs on the MNIST classification task
(a mere 0.57% lower than floating-point-based training) and
with good retention. Ambrogio et al [18] mitigated the large
inherent D2D variability by using a novel unit cell architecture
with two PCM devices, three transistors and one capacitor and
by incorporating strategies such as polarity inversion. They
reported an impressive two orders of magnitude improvement
in energy efficiency for fully-connected layers, compared to
a modern GPU on many commonly used machine-learning
test datasets (MNIST, and transfer learning of CIFAR-10 and
CIFAR-100).

Recent learning in the forming and switching operations
(set, reset) provides useful guidelines for improving the con-
trollability of stochastic variability of ReRAM devices. The
forming process is reported to follow the statistics similar
to those of oxide breakdown, indicating a sufficiently high

Figure 14. (a) Forming procedure for three pairs of titanium-based
devices (structure shown in the inset). (b) Four consecutive set and
reset cycles for the same three pairs using the traditional
resistance-based current sensing approach (note how a decision
resistance threshold is hard to define in the read region shown in the
inset). (c) Four consecutive write cycles for the same devices, but
using a ratio-based voltage sensing approach, which results in much
tighter state distributions. (d) Proposed ratio-based cell and its array
architecture. The cell is formed by two anti-serially connected
bipolar memristors (left and right) and a minimum-sized field effect
transistor (mFET). Note that whereas this proof of concept uses
devices with a low resistance range (1–100 kohm), this encoding
can be applied to any resistance range, as the encoding uses the ratio
of resistances, and thus it is insensitive to the absolute resistance
values. The figure is adapted from [84].

voltage is needed in order to form all devices [80]. The trade-
off between inherent randomness and the switching symmetry
to set and reset the ReRAM devices are presented based on
the study using the GPR methodology [82], which provides a
direction to find optimal operating point by optimizing materi-
als and switching pulse conditions. At the circuit-level, Chang
et al demonstrated an adaptive self-terminating write scheme
against resistance and switch-time variations [86]. Ratio-based
redundancy encoding techniques have also proven successful
as a general mechanism to reduce intrinsic variations. Lastras-
Montaño et al [84] recently proposed amemory cell comprised
of two resistance-switching elements with a minimum-sized
transistor (as shown in figure 14(d)), in conjunction with an
information encoding scheme that uses the resistances ratio
of the resistance-switching elements to encode information.
As a proof of concept, they demonstrated that such a ratio-
based encoding (figure 14(c)) results in a substantial reduc-
tion in bit error rate (BER) of more than two orders of mag-
nitude compared to the traditional resistance-based approach
(figure 14(b)), and a BER reduction of up to six orders of
magnitude when used together with standard error correcting
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codes. Whereas this ratio-based encoding has a direct use in
memory applications, it also has the potential to be used in
voltage-based analog computing, as experimentally demon-
strated in [87] by Liu et al in which they implemented the
parallel multiply-accumulate operation in an SRAM array.

Concluding remarks

PCM and ReRAM crossbars are promising candidates as key
multi-bit or analog memory elements used in accelerators for
the training and inference of DNN. However, device fabrica-
tion imperfections and the intrinsic stochasticity of the devices
result in high variations that must be tackled before broad
adoption of these technologies. While continuing reduction
in device variation is fully expected for the next few years,
novel, silicon-compatible, and complementary solutions at the
circuit-, architecture-, and system-levels will be needed as
well in order to achieve sufficiently high reliability and cost-
effectiveness for consumer and enterprise applications. We
also anticipate that future large-scale systems built upon these
technologies will rely heavily on a hierarchical redundancy

mechanism, including redundancy at the cell-level (such as the
use of ratio-based encodings), row/column sparing, bank rep-
lication, error-correcting codes, and all the way to application-
layer redundancy, to mitigate the negative impact of device
variations.
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Inspired by the in memory computing architectures of bio-
logical systems, neuromorphic computing using crossbar
arrays of artificial synapses based on non-volatile memory
(NVM) devices with variable conductances has emerged as
a new paradigm to enable massively parallel and ultra-low
power computing hardware for data centric applications [88].
Although inference has been demonstrated successfully using
crossbars based on a variety of NMV technologies, efficient
learning and scaling to large arrays (>106 elements) remains
a challenge due to the synaptic elements’ non-ideal electrical
characteristics which degrades ANN accuracy [89]. A further
challenge is that in the conductive state memristors draw large
currents >µA resulting in significant voltage drops in the inter-
connect wires and increased probability of failure in scaled
arrays [90]. The organic polymer redox transistor (RT) is an
alternate approach that could solve many of these challenges,
enabling both inference and parallel outer product updates,
as recently demonstrated by Fuller et al [91] An RT consists
of redox-active channel and gate electrodes in contact with a
liquid or solid electrolyte. Ion insertion through the electrolyte
controls the channel electronic conductivity, while electron
transfer through an external circuit maintains overall charge
neutrality. Unlike a rechargeable battery, in the RT the voltage
built-up across the electrolyte is kept to a minimum (typic-
ally < 100 mV) by using the same material for the gate and
channel. Elimination of the voltage offset simplifies integra-
tion of the RT into programmable arrays by enabling the use
of various selectors [91]. RTs based on inorganic and organic
materials have been recently demonstrated with conductance
tuning occurring at potentials of just a fewmV and hundreds to
thousands of linearly and symmetrically programmable con-
ductance states, enabling near ideal accuracy in neural net-
work simulations. Introduced in the 1980s, RT with metal-
lic gate electrodes and organic channel materials, also known
as organic electrochemical transistors (OECTs), have been
explored for a variety of applications such as chem- and bio-
sensing, neural interfaces, and low cost printed circuits [92]. A
typical channel material for OECTs is the conducting polymer
poly(3,4‐ethylenedioxythiophene) doped with poly(styrene
sulfonate) (PEDOT:PSS). PEDOT is a p-type semiconduct-
ing polymer with mobile positively charged polarons that hop
chain-to-chain.

Current and future challenges

Tuning the electrical properties through composition enables
the polymer RT to attain the required low ‘read’ currents
without the loss of linearity or symmetry. By adjusting
the PEDOT:PSS formulation, the average channel conduct-
ance can be lowered to <100 nS (i.e. read current <10 nA
at 100 mV read voltage) while maintaining a high signal-
to-noise ratio during nearly-linear and symmetric program-
ming (figure 15(b)) [91]. Although some NVM devices have
been engineered to operate at < 50 nA, they are either bin-
ary or suffer from ‘write’ noise that severely reduces ANN
accuracy [93].

Fast read and write speeds for the synaptic elements are
also essential for practical implementation in analog ANNs.
The RT switching speed can be estimated by treating the
write process as charging of a supercapacitor. With experi-
mentally measured RT capacitance values of ~4 µF mm−2

for devices with a channel thickness of 200 nm, a total integ-
rated current required to incrementally charge the redox-
transistor by ~2 mV (per write pulse), and solid electro-
lyte (Nafion) resistivity of 20 Ohm-cm, a write time of 1 ns
was estimated for scaled RT dimensions of 300 × 300 nm2

[91]. This estimate time compares well with the 200 ns write
time measured for a 45 × 125 µm2 PEDOT:PSS device,
and the extrapolation of measured values as a function of
dimensions shown in figure 15(c). While realizing polymer
RT devices with sub-micron dimensions remains the sub-
ject of active research, OECTs with 50 nm gate length and
well-behaved linear and saturation regimes have recently been
demonstrated [94, 95].

Another important feature for neuromorphic computing
technology is endurance. For Li-ion battery, degradation is a
well-known problem that limits their use to ~1000 charge/dis-
charge cycles. However, since RTs can operate near 0 V
between the channel and gate electrodes, unwanted elec-
trode/electrolyte interfacial reactions that plague batteries are
diminished or entirely avoided, resulting in experimentally
demonstrated endurance of >109 binary write-read opera-
tions and >108 write-read operations sampling the entire syn-
apse conductance range (figure 15(d)) [91]. Nevertheless,
polymer degradation due to parasitic reactions with oxy-
gen and/or water can be problematic especially at elevated
temperatures, making this an important area of continued
research.

Advances in science and technology to meet
challenges

Full realization of the polymer RT concept and its practical
implementation in ANN accelerators requires significant fur-
ther development. For example, ion injection through the
electrolyte-electrode interface is poorly understood in organic
electrochemical systems due in part to the high degree of
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Figure 15. (a) polymer RT schematic indicating path of electrons and protons during programming and (b) conductance during write
operations of a polymer-RT, (c) estimated (dashed line) and measured (open circles) RT switching speed scaling with channel area. Each
write pulse corresponds 1% device conductance change, (d) Demonstration of >1 × 108 write-read operations (cycling between the low-
and high-conductance state) without deterioration of device properties [91]. Reprinted with permission from AAAS.

structural disorder. Likewise, the presence of both partially
crystalline and nearly amorphous regions typical of mixed ion-
ic/electronic organic conductor like PEDOT:PSS leads to spa-
tially dependent electronic properties, which implies increas-
ing variability in device to device electronic conductance
as dimensions shrink. Such variability could substantially
degrade network accuracy and must be addressed at the nano-
meter scale. Another major hurdle for polymer RTs is integ-
ration with Si CMOS and the related issue of thermal stabil-
ity. Polymer-based RT are not compatible with the >400 ◦C
anneal step typically used in a BEOL process. Nevertheless,
the development of electronic polymers that can withstand
these temperatures is an active area of research. Recently,
polymer blends that exhibit stable charge transport at high
temperatures (200 ◦C) [96], as well as proton conductors
for polymer exchange membranes that function at 200 ◦C
have been reported [97]. Finally, alternative heterogeneous

integration schemes currently being explored for other post-
Si CMOS technologies could be adapted to polymer RT
integration [98].

Acknowledgments

The work at Sandia National Laboratories was supported by
the Laboratory-Directed Research and Development (LDRD)
Programs. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsi-
diary of Honeywell International, Inc. for the US Department
of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. The views expressed in the article
do not necessarily represent the views of the US Department
of Energy or the United States Government).

28



Nanotechnology 32 (2020) 012002 Roadmap

10. Light-based neuromorphic computing

Bhavin J Shastri1,2, Alexander N Tait2,3, Thomas Ferreira de
Lima2, Yichen Shen4,
Huaiyu Meng4, Charles Roques-Carmes4, Zengguang
Cheng5,6, Harish Bhaskaran5 and Paul R Prucnal2

1 Department of Physics, Engineering Physics & Astronomy,
Queen’s University, Kingston, ON KL7 3N6, Canada
2 Department of Electrical Engineering, Princeton University,
Princeton, NJ 08544, United States of America
3 Physical Measurement Laboratory, National Institute of
Standards and Technology (NIST), Boulder, CO 80305,
United States of America
4 Lightelligence, Boston,MA02210, United States of America
5 Department of Materials, University of Oxford, Oxford OX1
3PH, United Kingdom
6 State Key Laboratory of ASIC and System, School of Micro-
electronics, Fudan University, Shanghai 200433, People’s
Republic of China

Status

Optical neural networks appeared in the scientific imagin-
ation over 30 years ago [99] and again over 10 years ago
[100]. The fundamental reasoning for combining optics and
neural networks has not changed in decades: roughly speak-
ing, connectivity and linear operations. Optical signals can
be transmitted at high bandwidth without degradation, and
they can be multiplied by tunable attenuators and added in
parallel through the accumulation of photocarriers or pho-
tocurrents. The 2009 investigations into the first spiking
photonic neurons have gradually evolved into what we now
know as the rapidly growing field of modern neuromorphic
photonic computing. The year 2013 saw the first proposal
for an integrated spiking laser neuron [101], a direction
that has since been intensely pursued by several research
groups [102].

Silicon photonics provides a crucial differentiation with
respect to investigations of previous decades. Silicon photonic
platforms can host high-quality passive optics combined with
high-speed optoelectronics. 2014 brought a proposal for a
silicon photonic neural network [103], which was demon-
strated in 2017 [104] (figure 16(a)) concurrently with two
more proposals for silicon photonic neuromorphic architec-
tures [105, 106] (figures 16(b), (c)).While the first architecture
uses multiple wavelengths and tunable filters, the second relies
on coherent interconnects and phase shifters, and the third pro-
poses using single photons for communication.

Silicon photonics with energy-efficient non-volatile
phase-change materials (PCMs) have shown potential for
photonic neuromorphic computing. After the first demon-
strations of multi-level photonic memory in 2015 [108],
using PCMs, on-chip photonic synapse and photonic in-
memory multiplications have been demonstrated in 2017
[109] and 2019 [110] respectively. In 2019 an all-optical
SNN with PCM integrate-and-fire scheme was demon-
strated [107] (figure 16(d)). Almost all these utilized

well-known optically functional materials; further research
into functional materials for phase shifters and other
photonic functionality will enable more efficient photonic
architectures and would form an important component of any
roadmap.

2019 appears to be the year of the silicon photonic neuron,
devices capable of cascading photonic signals from one layer
of the neural interconnect to the next. A neuron for the multi-
wavelength architecture uses a photodiode to drive a micror-
ing modulator [111] (figure 17(a)). A neuron for the coher-
ent architecture (figure 17(b)) uses an electronic amplifier to
remodulate the optical signal [112]. In a PCM-based neuron,
WDM signals combine to influence the transmission of a
microring [107] (figure 17(c)). Neurons for the cryogenic
architecture use a superconducting amplifier in order to drive a
silicon light-emitting diode from a weak single-photon signal
[113] (figure 17(d)).

An advantage of optical neural networks is that both the
linear and non-linear operations can be performed on the
same substrate, so data traversing multiple layers of neur-
ons does not need to shuttle off-chip or even leave the ana-
log domain. In addition, interconnects are implemented by
direct physical connections meaning that many types of sig-
nals can be supported by the same interconnect hardware.
Unlike many virtual interconnection strategies, physical inter-
connects can support a variety of neural network architectures
including: multilayered or deep [105], recurrent [104], and
spiking [107].

Neither optics nor neural networks should be viewed as
replacements for regular computers, yet ultrafast neural net-
works promise to extend the bounds of machine information
processing in a range of areas, some discussed below. In the
past year alone, significant progress has been made on demon-
strating the hardware foundations of at least four proposed
architectures. This experimental drive is expected to intensify
in coming years to systems that are complete and larger in
scale.

Current and future challenges

In the immediate future, efforts to increase the number of
photonic neurons in a single network will continue. Larger
numbers of neurons broaden the repertoire of information pro-
cessing capabilities. A key limiter of scalability today is elec-
tronic control. The number of programmable parameters in
the network scales quadratically with the number of neur-
ons. Weight controllers do not need to be high-speed or high-
power—the challenge is co-packaging thousands of control-
lers with the photonic networks.

Whilst photonic neural networks have difficulty reach-
ing the component density of digital electronic processors,
they can operate with bandwidths faster than existing elec-
tronic information processors. Thus, a critical area for fur-
ther research will be identifying applications that are uniquely
enabled by such large bandwidths. An example includes cog-
nitive radio, where non-trivial decisions about the changing
spectrum must be made in real-time. Another possibility may
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Figure 16. Proposed neuromorphic photonic architectures. (a) Broadcast and weight [104], (b) superconducting optoelectronic network
[106]. (c) Programmable nanophotonic Mach-Zehnder mesh [105]. (d) PCM architecture [107].

Figure 17. Latest hardware research on neuromorphic photonic architectures. (a) Microring modulator neuron compatible with conventional
silicon photonic platforms [111]. (b) One cell of a programmable nanophotonic mesh using thermal phase shifters [105]. (c) PCM-based
neuron where WDM signals combine to influence the transmission of a microring [107]. (d) Drive chain of a superconducting
optoelectronic neuron where a single photon triggers a superconducting switch, which then drives an all-silicon LED [113].

lie in predictive control for rapidly changing systems [102]. In
any control application, decision-making is time bound. Redu-
cing control latency to 10 ns would enable control or classi-
fication of processes that are uncontrollable by any existing
technology.

A third key direction will be how to evaluate neuromorphic
photonic systems. Unlike digital processors, analog processors
carry out computations by mapping a problem directly to the
physics of a network of analog devices. As a result, they
are sensitive to noise and parameter variations, leading to
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uncertainties in the results of each computation. Small-scale
benchmarks will be needed to evaluate the correctness of
experimental systems. There has been initial progress to this
end using small benchmarks in voice recognition [105], pat-
tern recognition [107], differential equation solving [104], and
statistical estimation. Task-based evaluations will be comple-
mented by metric-based evaluations.

There are two important bottlenecks in the energy effi-
ciency of state-of-the-art artificial intelligence accelerat-
ors: data movement (to and from memory and processor),
and the performance of a basic operation called multiply-
accumulate (MAC) that is involved in matrix-vector mul-
tiplications (MVM). While there is not yet consensus
on the exact metrics and scaling laws of physics-based
neuromorphic computers, at present, likely metrics are
energy efficiency (energy/MAC), throughput per unit area
(MACs s−1 mm−2), speed (MVM s−1), and latency(s), where
both speed and latency are measured across an entire MVM
operation. In electronics, the state-of-the-art values typically
fall around 0.5–1 pJ MAC−1, 0.5–1 TMACs s−1 mm−2, 0.5–
1 GMVM s−1, and 1–2 µs, respectively. In contrast, photon-
ics MVM units could perform in range 2–10 fJ MAC−1,
50 TMACs s−1 mm−2, ~3 ps (1 clock cycle) per MVM oper-
ation and less than 100 ps. This performance depends on
solving a number of practical problems which are possible
to address in the short term. Photonics ultimately has very
similar limits to analog electronic crossbar arrays, as ana-
lyzed in [114]: single-digit aJ/MAC efficiencies, and 100 s
of PMACs s−1 mm−2 compute densities. However, photonic
MVMs garner an advantage for larger MVM units, both in the
size of the matrix and in the physical footprint of the core.

We stress that more detailed comparisons with existing and
future hardware technology should also account for the power
of the control electronics, laser pumps, and optoelectronic con-
versions. It is expected that the higher operational bandwidth
of neuromorphic photonic systems could amortize the addi-
tional power factors in the wall-plug total; however, a more
comprehensive, quantitative study of the aspects of wall-plug
power and system efficiency metrics is called for.

Advances in science and technology to meet
challenges

Photonic processors have light sources, passive and active
devices. Currently, there is no single commercial fabrication
platform that can simultaneously offer devices for light gener-
ation, wavelength multiplexing, photodetection, and transist-
ors on a single die; state-of-the-art devices in each of these
categories use different photonic materials (silicon nitride,
germanium, indium phosphide, gallium arsenide, 2D mater-
ials, functional materials, etc) with incongruous fabrication
processes (silicon-on-insulator, CMOS, FinFETs). Silicon
photonics is becoming an ideal platform for integrating these
devices while offering a combination of foundry compatibil-
ity, device compactness, and cost that enables the creation of
scalable photonic systems on chip.

Materials: Energy efficient and fast switching optical and
electro-optical materials are needed for non-volatile photonic
storage and weighting, as well as high-speed optical switch-
ing and routing, with low power consumption. Neural non-
linearities are already possible on mainstream platforms
using electrooptic transfer functions [111], but new materi-
als promise significant performance opportunities. PCMs, and
graphene and ITO-based modulators can also be utilized for
implementing non-linearities. Plasmonic PCMs are capable of
bridging the optical and electrical signals, through the dual
operation modes [115]. A general material design method is
in urgent need to develop appropriate photonic materials for
different photonic components [116].

Lasers and amplifiers: On-chip optical gain and power will
require co-integration with active InP lasers and semicon-
ductor optical amplifiers. Current approaches involve either
III–V to silicon wafer bonding (heterogeneous integration) or
co-packaging with precise assembly (hybrid approach) [117].
Quantum dot lasers are another promising approach as they
can be grown directly onto silicon, but fabrication reliability
does not currently reach commercial standards [118].

Electrical control: Co-integrating CMOS controller chips
with silicon photonics to provide electrical tuning control/sta-
bilization will be critical. Candidates include wire-bonding,
flip-chip bonding, 2.5D integration (interposers), 3D stacking
(through-silicon-vias), and monolithic integration. Each has
performance and design tradeoffs [119].

System packaging: A photonic processor must be inter-
faced with a computer. It would need to be self-contained,
robust to temperature fluctuations, and with electrical input-
s/outputs [120]. Currently, manufacturers do not assemble
electrical/thermal elements and chip-to-fiber interconnects.

Algorithms: Significant advances will be required to map
abstract neural algorithms to photonic processor to usher these
platforms into the commercial space. So far, only individual
devices and small control circuits are described in the literat-
ure. The goal is to enable neural network programming tools
(TensorFlow) to directly reconfigure a neuromorphic photonic
processor [120].

Concluding remarks

Neuromorphic photonics has reached an inflection point, bene-
fiting from great opportunities as the world looks for altern-
ative processor architectures. The physical limits of Dennard
scaling is galvanizing the community to put forward candid-
ates for next generation computing, from bio- to quantum
computers. Photonics and in particular neuromorphic photon-
ics, are a formidable candidate for analog reconfigurable pro-
cessing. We expect the development of this field to acceler-
ate as neuroscience makes further leaps towards our under-
standing of the nature of cognition and artificial intelligence
demands more computational resources for machine learning.
As photonics technology matures and becomes more access-
ible to academic groups and small companies, we expect this
acceleration to continue.
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Two-dimensional (2D) materials are part of an emerging fam-
ily of materials more broadly termed as van der Waals mater-
ials that are available in all major electronic classes, namely
metals, insulators and semiconductors. The atomically-thin
nature combined with self-passivated surfaces and van der
Waals bonding allows their direct integration with most other
materials rendering them attractive for heterogeneous integ-
ration in electronics and opto-electronics. A key advantage
among the wide range of superlative physical properties of
2D materials is their semi-transparency to electric fields in the
atomically-thin limit. This enables superior electrostatic con-
trol, not just of the single 2D layer but also of multiple other
layers sitting atop them in direct contact or close proximity.
As a consequence, even vertical heterostructures and nomin-
ally buried heterojunctions and heterointerfaces are actively
tunable with electric fields [121] which is very challenging to
realize in Si, oxide or other bulk compound semiconductor het-
erojunctions.

While a majority of materials under consideration for res-
istive switching (also known as ‘memristive’) phenomena are
amorphous and oxide or chalcogenide materials, 2D semicon-
ductors and insulators are an emerging class in this domain of
device applications due to the above-mentioned unique prop-
erties. For seamless integration with high performancemodern
electronics, resistive switching devices will need to achieve
low-power and high operation frequency depending on applic-
ation requirements. As a consequence, it is critical for resistive
memory devices to realize low SET and RESET voltages con-
currently with high switching speeds which are both directly
related to reducing switching layer thickness (figures 18(a),
(b)). This is precisely where 2D van der Waals materials with
sub-nm control of layer thickness [122, 123] have unique
advantages [124, 125] as compared to well established resist-
ive switching media. Further, among 2D materials, there is a
wide variety of elemental and compound semiconductors and
insulators with varying band-gaps ranging from infrared to
ultra-violet range that have been identified. Several of them,
particularly the chalcogenides show a rich variety of struc-
tural and electronic phase changes that are reversible and can
be induced by electric fields, temperature, alloying or carrier
doping. This provides additional opportunity and static con-
trol for resistive memory transition from a crystalline to crys-
talline state [126, 127] down to individual monolayer thick-
ness which is unprecedented. Finally, the semi-transparency to
electric fields and superior electrostatic control in atomically-
thin layers allows active tunability or dynamic control of res-
istive switching phenomena in 2D materials and their hetero-
structures. In addition, it also presents new opportunities for

resistive switching in open 1D interfaces such as grain bound-
aries [128, 129] in a polycrystalline 2D semiconductor film
(figures 19(a), (b)) as opposed to buried interfaces in 3Dmater-
ials which opens new opportunities in basic device as well as
architecture design. An important trade-off between the ver-
tical (figure 18) and horizontal (figure 19) memristive devices
is related to variation and control of the conductance state.
While the vertical memristors can exhibit tight distribution of
set voltages and conductance values (variation <100 mV from
distribution normal), there is minimal control over the high
and low resistance states. Whereas for the lateral grain bound-
ary memristors, there is almost continuous control over the
high and low resistance state values, but the variance across
devices between the ratios of conductance states can be as
high as half an order of magnitude. The key to applications
of memristors in machine learning-based computing architec-
ture would be as hardware accelerators to digital processors
in the form of analog neural networks. To attain a functional
and competitive advantage in such networks one must achieve
minimal parasitic power dissipation (such as sneak current in
cross bar memristor networks) and maintain high degree of
dynamic synaptic plasticity. 2D materials as discussed above
can be pattered into a one transistor one memristor (1T1M)
architecture all within the same layer of material and without
the need for cross-bars which reduces sneak current issues.
In addition, the tunability of grain-boundary synapse plasti-
city both with pulse width and gate-voltage allows training to
implementation of arbitrary target matrices. This could poten-
tially enable hardware for general acceleration of any matrix
operations, critical for data sets that come in large matrices.
Therefore, despite the relatively mature nature of ReRAM and
resistive switching technology, 2D and van der Waals mater-
ials present a tremendous opportunity for breakthroughs and
transformative impact from fundamental device phenomena
and design all the way to architectures.

Current and future challenges

While 2D materials-based memristor devices have shown sig-
nificant potential in terms of low power and high speed device
performance and functionality, a critical challenge with this
materials family as a whole is their large area scalability,
uniformity and as a consequence reliability. The infancy of
the materials class presents challenges in terms of quality
and structure control. A large number of candidate materi-
als are binary compounds that can be alloyed into ternary
or quaternary compounds to tune the band gaps such as the
transition metal dichalcogenides of Mo, W, Hf, Zr, Sn etc,
noble metal dichalcogenides of Pt and Pd as well the group
IV monochalcogenides such as Ga- and In-based selenides
and sulphides as well as boron-based nitrides and oxynitrides.
This is a particularly important challenge bearing in mind that
the memristive/conductive filament forming conditions are a
strong function of layer thickness and compositions. There-
fore, layer by layer, high uniformity growth with precise com-
positional control will be critical moving forward. For lateral
memristors or memtransistors, where grain boundary effects
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Figure 18. (a) Schematic of a vertically stacked van der Waals
heterostructure-based memristive device with graphene as bottom
contact. The layered structure of the switching layer which
comprises of hexagonal boron nitride (h-BN) (zoom in) allows
atomic thickness level control of active layer and hence set voltage.
(b) I–V characteristics of memristor devices shown in (a) with
varying thickness of h-BN. (b) Adapted from [123] © Wiley-VCH
(2017).

and diffusion dominate the device operation, a uniform dis-
tribution of boundary types, lengths and orientations remains
another formidable challenge. Likewise, for ultrathin, two-
terminal memristive devices from layered chalcogenides that
rely on phase changes, the electric fields for switching are
lower for ternary alloys. This makes control over both crys-
tal composition and thickness in thin films, over large areas
critical for high reliability devices. This compositional con-
trol is also critical for field-tunable memristive devices since
they rely on compositional control at lateral grain boundar-
ies which in turn allows dynamic fine control over SET and

Figure 19. (a) Schematic of monolayer chalcogenide grain
boundary memristive device showing the atomic structure of tilt
grain boundary zoomed in. (b) I–V characteristics showing
gate-voltage induced tunability of SET voltages. (b) Adapted from
[128] respectively © Springer Nature (2015).

RESET voltages [128]; a critical feature for multi-level resist-
ive memory for training of complex neural networks. Another
critical issue for van der Waals 2D materials is integration
with standard semiconductor processes. Many memristive 2D
materials including h-BN rely on catalytic metal substrates for
high temperature CVD synthesis. The growth temperatures are
not suitable for direct back end of line (BEOL) integration.
Post growth room temperature transfer strategy while viable,
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may introduce transfer related defects such as cracks, wrinkles
and unwanted contamination that may compromise reliability
over large areas.

Advances in science and technology to meet
challenges

The challenges described above are complex and difficult.
However, advances in materials growth and characterization
over the past decade has given much reasons to be optim-
istic. In particular, large area, nearly single crystal synthesis of
materials such as graphene and boron nitride over metal foils
has now been achieved. This combined with the advances in
transfer processes makes it viable to achieve reliable memris-
tors over wafer scale with 2D materials that can met semicon-
ductor industry standards in principle. Further, there has also
been tremendous progress in the synthesis of layered chalco-
genides. In particular, MOCVD has been successfully used
for layer by layer, high quality growth. However, signific-
ant quality improvement is still desired for ternary and more
complex alloys and thicknesses greater than monolayers. To
achieve that, radically new synthesis approaches and optimiz-
ation schemes are desired. In addition, control over nucleation
and orientation of growing nuclei will be desired to achieve
single crystalline multilayer thin films of alloy chalcogenides.
Similar control over nuclei orientation will be desired for grain
boundary memristors and memtransistors. For direct BEOL
integration, high quality and controlled growth at low tem-
peratures 400 ◦C or below using plasma enhanced CVD or
MBE techniques will also present a major breakthrough. Sig-
nificant progress along these lines has already been achieved
[130] and some 2D chalcogenide materials such as WS2 are

being considered for foundry introduction with growth scaled
upto 300 mm wafers [131]. Finally, both fundamental science
advances and techniques for post growth patterning/introduc-
tion of controlled defects with energetic beams [132] will be
critical in reliable resistive switching over large number of
devices on wafer scales that can meet the current standards
of semiconductor industry.

Concluding remarks

In summary, as new physical and chemical properties con-
tinue to be discovered from this emerging class of materials,
more opportunities will open up for novel devices for resistive
switching andmemristor devices. The associated challenges as
with any new material is the potential to scale up and quality
control. However, judging by the infancy of memristor-based
electronic systems for machine learning algorithm processing,
there are tremendous opportunities for exploration and poten-
tial for innovation that span a range of research areas from
fundamental materials synthesis, design and defect control to
device design, integration and architecture design.
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Challenges for superconducting digital circuits. Digital
computing technologies based on Josephson junctions (JJs)
integrated at the chip scale have been explored since the 1970s.
In the digital computing domain, the outstanding performance
of silicon microelectronics has set a high bar for any com-
peting technology. JJs have received attention in this regard,
primarily due to their high switching speed and low energy per
operation. However, when directly competing with a platform
as mature as silicon, any weakness can be fatal.

The employment of JJs for digital computing has been held
up due to at least four challenges. First, dense random-access
memory is more difficult to achieve with superconducting cir-
cuits than with semiconductors. Second, while digital circuits
based on JJs have achieved greater than 100GHz clock speeds,
low-jitter clock distribution for an entire chip has been diffi-
cult to implement. Third, JJ systems must be kept near 4.2 K,
which requires cryogenic infrastructure and introduces an I/O
challenge when getting large amounts of data into and out of a
cryostat. Fourth, superconducting circuits operate at millivolt
levels due to the scale of the superconducting energy gap, caus-
ing a voltage mismatch between superconducting and semi-
conducting circuits. This presents a challengewhen attempting
to interface cryogenic superconducting systems with room-
temperature semiconducting systems. While significant pro-
gress has been made in the last several decades regarding JJ
circuits for computation, no systems have yet come close to
displacing CMOS for digital computing.

Superconducting neuromorphic circuits. Upon moving to
the neuromorphic domain, the primary challenges that have
hindered JJ circuits for digital computing improve consid-
erably. In neural circuits, memory is co-located with pro-
cessing in the form of synapses connected to neurons. Synaptic
memory is sampled each time a communication event occurs
between two neurons, alleviating the need for large banks
of RAM. Several types of superconducting synapses have
been proposed [133] and demonstrated [134]. Regarding clock
speed, neurons based on JJs can operate in the 25–50 GHz
range [135, 136], and analog neural circuits are asynchronous
in nature, so there is no need for a distributed clock. Large-
scale superconducting neuromorphic systems may require sig-
nificant data I/O, but JJ-based synapses and neurons that
receive single photons and produce faint photonic signals
have been proposed [133]. These optoelectronic neurons may

operate in conjunction with all-electronic JJ neurons to allevi-
ate the I/O challenge by implementing data ingress and egress
over optical fibers with lower heat load than conventional
coaxial cables. Production of light by optoelectronic neurons
does take more time than ultrafast JJ neurons, but it brings
the advantage that signals are transmitted via near-infrared
photons with 1 eV, which can directly interface with semi-
conductor circuits, thereby bridging the voltage mismatch.
A detailed comparison to CMOS is difficult at this junc-
ture. However, combining both the high speed and low power
dissipation, a superconducting neuromorphic system could
potentially offer a factor of 10x to 100x better in synaptic oper-
ations per watt (SOPS Watt−1) [137] than any silicon system
to date.

Biological Realism. Beyond addressing some of the chal-
lenges that have limited the adoption of JJ circuits for digital
computing, JJ circuitsmay be a better fit to neuromorphic com-
puting than digital computing because of the nature of Joseph-
son physics. Thresholding and spiking operations, central to
neural information processing, are native to JJs. Many types of
JJ-based neurons have been proposed and developed, begin-
ning in the late 1980s [138]. Recent successful implementa-
tions include the so-called JJ neuron proposed by Segall and
others in 2010 [135], based on the close analogy between JJ
behavior and ion channels in neurons. Figures 20(a)–(c) shows
the JJ neuron circuit diagram alongwith numerical simulations
of the action potential and of inhibitory coupling [135].

These neuron designs achieve spiking behavior in the time
domain and are naturally suited for development into SNNs.
While transistor circuits are not naturally spiking and may be
more suited to implementing static neural networks for deep
learning, JJs are well equipped to harness the energy efficiency
and resilience to noise of SNNs. It has been shown in simula-
tions that similar circuits can be employed to extend neuron
functionality to harness the information processing occurring
in the dendritic tree of biological neurons [139]. The spiking
properties of JJ neurons were experimentally demonstrated in
2017 [136], where the synchronization states of two mutu-
ally coupled neurons were measured. Figures 20(d)–(f) show
a Scanning Electron Micrograph of the two coupled neurons
and the bifurcation map of their firing states, measured and
calculated [136].

Synaptic weighting in superconducting neurons can be
accomplished by several means. One is by making use of
the variability of the Josephson inductance in an inductive
divider. The tunability of the critical current in an MJJ can
also be used to control the amount of current routed to each
synaptic connection [134]. Alternatively, the current bias to a
JJ can be used to adjust the number of fluxons created when
the junction is driven above threshold [133]. The weight of a
synapse can be stored in a flux storage loop, which has the
advantage that their state can be readily updated based on
network activity to implement biologically realistic plasticity
mechanisms. Meanwhile, MJJs have the advantage that they
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Figure 20. Behavior of the JJ neuron. (a) Schematic of the JJ neuron. Two junctions (pulse junction and control junction) in parallel are
driven by two currents, an input current and a bias current. An LRC-filter following the neuron shapes the action potential into a synaptic
current. (b) Action potentials from the JJ neuron. Black is the flux in the loop, red is the pulse junction voltage, and blue is the negative
control junction voltage. The pulse junction and control junction behave like ion channels in the Hodgkin-Huxley model. (c) Inhibitory
coupling simulation with two JJ neurons. Black is the postsynaptic neuron and blue is the presynaptic neuron. The red stimulus causes the
presynaptic neuron to fire, inhibiting the postsynaptic neuron. (d) SEM micrograph of two mutually-coupled JJ neurons. (e)–(f) Experiment
and simulation, respectively, of synchronized firing states of the two mutually-coupled neurons. Red represents anti-phase states while blue
represents in-phase states. (Note: (a)–(c) is taken from [135] and (d)–(f) is taken from [136]).

can retain their state for a long duration, even above super-
conducting temperatures. Combined with static neurons made
from JJs, these synapses could also be used for a low-power
deep learning implementation [140]. Mature superconducting
neural systems are likely to employ multiple synaptic plasti-
city mechanisms to enable rapidly adaptable synaptic weights
alongside long-term memory retention.

Interconnection networks. Efficient communication
between neurons is central to neuromorphic computing. Neur-
ons in large systems must be able to fan signals out to thou-
sands of destinations to maintain short path lengths across
the network, and the same degree of fan-in is therefore also
required. Active Josephson transmission lines and pulse split-
ters enable high fan-out over dissipationless transmission
lines. This direct fan-out may overcome the need to implement
a shared digital communication infrastructure, as is done with
CMOS neural systems. The shared switching network results
in communication bottlenecks and traffic-dependent delays
that hinder scaling.

For large-scale neural systems, multiple die or even mul-
tiple wafers are likely to require interconnection. At such
a scale, photonic communication is advantageous regardless
of whether semiconducting or superconducting neurons are
employed. Superconducting systems have unique advantages
in this regard due to the light sources and detectors avail-
able at low temperature. Because silicon can be used as a

light emitter at liquid-helium temperature, light sources sim-
pler than transistors can be incorporated, leading to scalable,
cost-effective integration. Similarly, superconducting single-
photon detectors provide the possibility for energy-efficient
optical links between neurons producing light and synapses
receiving single-photon signals. These optical links have been
demonstrated in [141] (see figures 21(a)–(c)), and passive
photonic routing networks utilizing multiple planes of wave-
guides have been demonstrated in [142] (see figures 21(d)–
(f)). Optoelectronic neurons based on these devices have been
designed as straightforward extensions of JJ neuron circuits
[133, 139].

Fan in of many signals to a single integrating neuron cell
body can be accomplished with mutual inductors, thereby
avoiding leakage current pathways and cross talk. Taken
together, active Josephson transmission lines can connect
many neurons locally; photonic fan out enabled by silicon light
sources and single-photon detectors can achieve high con-
nectivity across more distant regions of large neural networks;
and mutual inductors can provide the high fan-in necessary
to receive thousands of inputs. These strengths of cryogenic
interconnects are likely to prove invaluable when scaling to
large neural systems.

A roadmap for scaling. It is in the domain of neuromorphic
supercomputing that superconducting hardware is likely to
have an impact. Due to the immature nature of this technology,
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Figure 21. Experimental progress toward superconducting optoelectronic networks. (a) Schematic of waveguide-integrated silicon LED.
Embedded emitters are shown in the intrinsic region of the p-i-n junction. (b) Microscope image of a silicon LED waveguide-coupled to a
superconducting-nanowire detector. (c) Experimental data showing that light is coupled through the waveguide, while cross talk to an
adjacent detector on the chip is suppressed by 40 dB. (a)–(c) Adapted from [141]. (d) Schematic of multi-planar integrated waveguides for
dense routing. (e) Schematic of feed-forward network implemented with two planes of waveguides. The inset shows the tap and transition
device. (f) Data from an experimental demonstration of routing between nodes of a two-layer feed-forward network with all-to-all
connectivity. The data is from light at a single input and collected at all ten outputs with the designed Gaussian distribution profile. (e)–(f)
Adapted from [142].

a roadmap for the next several years involves several feasibility
demonstrations as well as investigations of device limitations.
Neurons based on JJs leverage a superconducting electronics
process very similar to that used for superconducting digital
computers, so many core devices have already been demon-
strated. However, it remains to be seen if variability of JJ crit-
ical currents across a wafer can be made low enough for func-
tional systems, although adaptive plasticity mechanisms may
compensate for variability. These adaptive synapses require
further investigation to determine fabrication yield, variability,
and functional range of operation. Regarding interconnects,
the practical limitations of fan out over superconducting trans-
mission lines must be explored and compared to what can be
achieved with photonic interconnects. The limits of photonic
interconnects depend on how many waveguiding planes can

be integrated with electronic circuits as well as the achievable
efficiency of silicon light sources.

Looking forward, superconducting neuromorphic hard-
ware will continue to look better as one scales to bigger,
cloud-like systems. With low-power gates and dissipationless
interconnects, the energy benefit will continue to grow as the
system gets larger. With the high speed and biological realism
of JJs, one can imagine highly powerful SNNs as a long-term
goal for the field.
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Status

Neural networks are classified into three generations [143].
(table 1) The third-generation neural networks, also termed
as SNNs, are different from the second-generation ANNs
by explicitly incorporating time as a computational depend-
ence. In SNNs, both neurons and synapses could have local
state evolution rules (e.g. Hodgkin-Huxley neuron model,
spike-timing-dependent plasticity or STDP), which consti-
tute dynamical systems sharing a strong resemblance to the
brain [29]. Compared to ANNs, SNNs might be more noise-
immune, suitable for learning spatio-temporal patterns, event-
driven, and energy-efficient for a variety of tasks.

Efforts have been made to devise hardware for SNNs.
These SNNs not only reveal a better computational efficiency
than conventional computers for certain algorithms but also
advance the neuroscience. The representative systems are soft-
ware SNNs on clusters, digital-circuit SNNs, analogue-circuit
SNNs including those based on emerging devices like mag-
netic devices, ferroelectric devices, redox memristors and oth-
ers. The representative example of a software SNN is the
Manchester SpiNNaker which implements neural and synapse
models on up to a million ARM 968 processor cores [144].
The system is capable of simulating 460 million neurons and
460 billion of synapses, with programmable plasticity, which
has been applied to a variety of applications including mod-
elling of biological neural systems. (table 2) Digital-circuit
SNNs feature distributed digital neurons and synapses, such
as IBM TrueNorth and Intel Loihi, with the former for infer-
ence only [145] while the latter having programmable real-
time plasticity [146]. The TrueNorth system, packed with 16
chips, consists of 16 million neurons and 4 billion synapses
with applications like low-power real-time object recognition.
Intel Loihi-based platform [147], such as the Nahuku sys-
tem with 32 chips on a single board, possesses up to 4.2 mil-
lion neurons and 4.2 billion synapses, demonstrated efficient
simultaneous localization and mapping (SLAM). In terms of
analogue-circuit SNN, the Stanford Neurogrid, an assembly of
16 Neurocore chips, has 1 million analogue spiking neurons,
with applications to drive prosthetic limbs [148]. SNNs based

5 Present address: University of Southern California, Los Angeles, CA
90089, United States of America

Table 1. Classification of the neural network generations [143].

Generation Neuron Types

1 McCulloch-Pitts neurons with discrete out-
puts.

2 Neurons with analogue output (or continuous
activation function).

3 Spiking neurons with time-domain signal
outputs.

on transistor-platforms are so far the most mature and large-
scale available solution. Nevertheless, because the CMOS
devices were not created or optimized for the purposes of neur-
omorphic computing, they do not faithfully resemble synapses
and hence lack the intrinsic hardware learning capability. Con-
sequently, those silicon synapses and neurons require complex
circuits based on transistors, which are limited by the scalab-
ility and stackability. Bulky memory and frequent memory
accesses limit the learning rate as well as energy and area effi-
ciency in these systems. More energy/area efficient hardware
SNNs could be built with emerging devices such asmemristors
[39, 149] and ferroelectric transistors [29, 150]. More import-
antly, emerging hardware are of rich switching dynamics so
they can function like spiking neurons [151–153] and analog
synapses [149, 154, 155]. For example, phase change memris-
tors (PCM) [149] and diffusive memristors [149] could simu-
late both neural integrate-and-fire and synaptic STDP, leading
to all-memristive SNNs that can detect spatiotemporal correl-
ations and cluster patterns, respectively. As a potential out-
come of these research systems, long-term contributions into
improved understanding of how the human brain works may
lead to other benefits, such as improved therapies, in addition
to a more energy efficient computer.

Current and future challenges

Although the biological neural systems have shown remark-
able performance at low power, hardware SNNs including
those based on emerging devices have not yet experimentally
revealed their advantages. The main challenges are with the
training of SNNs.

One of the popular ways to train SNNs, particularly those
based on emerging hardware, is the bio-plausible local learn-
ing rules, such as biological variants of STDP. However, it
is challenging to use such local rules in optimizing deep net-
works with supervised learning signals, which often yields
relatively poor functionality compared to their ANN counter-
parts [156, 157]. Searching for powerful and scalable learning
rules is a constant pursuit of both machine learning and neur-
oscience communities. In addition, to faithfully duplicate the
local learning rules such as the STDP, the weights of synapses
shall be adjusted according to the relative spike timings of pre-
and post-synaptic neurons. Physical realization of such mech-
anism in a simple way with compact emerging devices could
be challenging.

Another method is to convert trained ANNs into SNNs by
adapting weights and thresholds of the spiking neurons [151].
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Table 2. Summary of the large-scale hardware SNNs.

SpiNNaker TrueNorth Loihi (Nahuku) Neurogrid IBM PCM SNN

System Type Software on custom-
ized cluster

Digital-circuit SNN Analogue-circuit
SNN

Analogue PCM SNN

No. of Neurons 768 K 16 M 4.2 M 1 M
No. of Synapses 768 M 4B 4.2B 4B

<4 M combined

Plasticity Programmable N. A. Programmable N. A. Simplified STDP
Application Objection

Recognition
SLAM Robotic Control Spatiotemporal

Pattern detection

The converted SNNs have been demonstrated to yield compar-
able accuracy to ANNs on complex datasets such as ImageNet
[157]. Since activations of analogue ANN neurons are typic-
ally translated into firing rates of spiking neurons, or multiple
spikes are often needed to represent one real-valued activation,
the energy-efficiency of such SNNs may not be significantly
better than that of conventional ANNs [155]. In addition, only
the spiking rate, not necessarily the spike timing, is utilized in
this approach. Furthermore, it is difficult for the training of the
corresponding ANNs to take advantage of emerging devices
by using the popular methods such as the error backpropaga-
tion. Moreover, the frequently used pooling and negative ANN
neuron activations are not straightforward to be implemented
on emerging devices [155].

The third way to train SNNs is through spiking-variants
of backpropagation, which aims to find a substitute of the
error gradient since the transfer functions of spiking neurons
are not differentiable. Such training methods are usually com-
putationally expensive, while showing no better performance
than that of the ANN-SNN conversion. However, spike-based
error backpropagation techniques can be used to optimize the
sparsity and inference latency of SNNs to further improve
the energy efficiency. In addition, similar to the ANN-SNN
conversion, the emerging hardware is unlikely to benefit the
training process which is mostly implemented on conventional
computers.

Traditional applications of SNNs have been in classifica-
tion problems. While classification of images and audio data
remain a challenging and important problem, other applica-
tions of SNNs are also being concurrently pursued [143]. In
particular, the stochastic variants of SNNs have strong compu-
tational properties to solve a large class of problems, including
optimization problems. Recent work has shown how clusters
of SNNs can collaboratively solve non-convex and even com-
binatorial problems [152], with far-reaching applications in
data analytics and control. This continues to remain an open
and promising area with more fundamental work needed both
in theory and applications.

Advances in science and technology to tackle
challenges

One way to close the performance gap between emerging
hardware-based SNNs and ANNs running on conventional

computers, is to devise hardware that can better implement
local learning rules. An example is the second order and
diffusive memristors where their Ca2+-like dynamics nat-
ively encode timing information like the chemical cascades
in biological synapses [153, 154]. In addition, some novel
local learning rules, such as the e-prop [158], may not only
help understanding on how the brain works but also benefit
efficient-learning with emerging hardware.

In addition to local learning rules, the challenges in ANN-
SNN conversion could be addressed with the advancement of
emerging hardware. So far, memristors has been reportedly
applied to the inference of the ANNs [29] but not the train-
ing. It is yet to implement the error backpropagation on the
emerging hardware. In addition, current ANN-SNN conver-
sion mostly encodes ANN neuron’s activations into SNN
neuron’s mean firing rates, the energy-efficiency of which can
be further boosted with low-precision arithmetic operations.
Moreover, event-based ANN-SNN conversion schemes may
better exploit the rich temporal dynamics of the emerging
hardware.

To overcome the limitation of the spiking-variants of back-
propagation, a future direction of research may be the incor-
poration of recurrence into SNNs, such as the reservoir com-
puting where the reservoir is made of random, sparse, and
recurrent connections between SNN neurons, followed by a
fully connected readout layer. The reservoir computing fea-
tures the lowest training complexity by retaining the weights
of the reservoir while adjusting those of the readout units to
recognize instantaneous patterns within the reservoir, which
could directly harvest the internal dynamics of emerging
devices, such as volatile memristors [159, 160].

Concluding remarks

Although SNNs were originally developed in direct response
to neuroscience, they have beenwidely studied for their unique
advantages from the standpoint of energy-efficiency and the
extra temporal dimension for information encoding.

The emergence of energy-efficient hardware simulators or
emulators of SNN has shown great promises for SNNs to be
used together with or even replace ANNs in a variety of com-
plex tasks. To unleash the full potential of the SNNs with
emerging hardware, better simulation of local learning rules,
ANN training with emerging hardware, hardware-algorithm
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co-design for ANN-SNN conversion, and the reservoir com-
puting may help explore and extend the advantages of
SNNs over conventional ANNs, which may also deepen the
understanding of information processing in biological neural
systems.
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