PCCP

View Article Online

PAPER

Cite this: Phys. Chem. Chem. Phys., 2016, 18, 12278

Received 13th January 2016, Accepted 23rd March 2016

DOI: 10.1039/c6cp00257a

www.rsc.org/pccp

Introduction

Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO_2 capture and storage (CCS) technologies that could substantially reduce the costs that are associated with the capture of CO_2 .^{1,2} In CLC, lattice oxygen of an oxygen carrier, typically a transition metal oxide, is used to combust a hydrocarbon. For example, the full oxidation of methane (CH₄) with oxygen provided by copper oxide (CuO) is given as

$$CH_4 + 4CuO \rightarrow CO_2 + 2H_2O + 4Cu \tag{1}$$

Na⁺ doping induced changes in the reduction

Q. Imtiaz,^a P. M. Abdala,^a A. M. Kierzkowska,^a W. van Beek,^b S. Schweiger,^c J. L. M. Rupp^c and C. R. Müller*^a

and charge transport characteristics of Al₂O₃-

stabilized, CuO-based materials for CO₂ capture[†]

Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO₂ capture technologies that could reduce appreciably the costs associated with the capture of CO₂. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al₂O₃), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al₂O₃ systems, phase stabilization and avoiding the formation of the $CuAl_2O_4$ spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na⁺ doping strategy to phase stabilize Al₂O₃-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO_2 capture efficiency. We also demonstrate that doping CuO-Al₂O₃ with Na⁺ improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na⁺ content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al₂O₃-supported CuO with Na⁺ lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed.

> Chemical looping with oxygen uncoupling (CLOU) is an extension of the CLC process to efficiently combust solid fuels. In CLOU a hydrocarbon is combusted with molecular oxygen that is derived from a metal oxide *via* a reduction reaction, *viz*.

$$4CuO \rightarrow 2Cu_2O + O_2(g) \tag{2}$$

$$CH_4 + 2O_2(g) \rightarrow CO_2 + 2H_2O \tag{3}$$

After the condensation of steam, a pure stream of CO_2 is obtained, which can be readily compressed and sequestered. The advantage of CLOU over CLC is that a solid fuel, *e.g.* coal can be combusted directly, *i.e.* an intermediate, often rate-limiting gasification step is omitted. To close the cycle, the reduced oxygen carrier is re-oxidized in air:

$$2Cu_2O + O_2 \rightarrow 4CuO \tag{4a}$$

or

$$2Cu + O_2 \rightarrow 2CuO$$
 (4b)

^a Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland. E-mail: muelchri@ethz.ch

^b Swiss Norwegian Beamlines, European Synchrotron Radiation Facility (ESRF), Grenoble, France

^c Electrochemical Materials, Department of Materials, ETH Zürich,

Hönggerbergring 64, 8093 Zürich, Switzerland

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp00257a

Fig. 1 The equilibrium partial pressure of O_2 as a function of temperature: (—) CuO-Cu₂O couple and (– –) CuAl₂O₄-CuAlO₂ couple. The thermodynamic data was taken from Barin and Knacke,⁷ and Jacob and Alcock.⁸

The oxidation reaction (4), is always exothermic, whereas the reduction reaction (1) is commonly endothermic, the most prominent exception being CuO. During CLC and CLOU operation, the two reaction steps, *i.e.* the reduction and re-oxidation of the oxygen carrier, are separated either spatially or temporally. Therefore, in CLC and CLOU the effluent during the combustion reaction is not diluted with nitrogen and, hence, the costs associated with the energy intensive CO_2 separation step are avoided. A further advantage of CLC and CLOU over conventional combustion processes is that the formation of NO_x is largely reduced.

The CuO-Cu₂O/Cu redox couple has been identified as a very attractive material for CLC and CLOU owing to its (i) high oxygen carrying capacity of 0.2 g O₂ per g CuO under CLC conditions, (ii) high oxygen uncoupling capacity of 0.1 g O₂ per g CuO under CLOU conditions, (iii) high equilibrium oxygen partial pressure in the temperature range 850-1000 °C (see Fig. 1), (iv) fast kinetics for the reduction reactions and (v) exothermic reduction reaction. However, the Tammann temperatures of CuO, Cu₂O and Cu (526 °C, 481 °C and 405 °C, respectively) are significantly lower than the typical operating temperature of the CLC and CLOU processes (850-1000 °C). The Tammann temperature indicates the onset of sintering and is defined empirically as half of the melting temperature, $T_{\rm m}$ (in Kelvin). Thus, research efforts are currently directed towards the development of sintering resistant CuO-based oxygen carriers that possess high phase stability and in turn also a high redox activity and stability. Various high Tammann temperature supports, e.g. ZrO₂, Al₂O₃, TiO_2 , SiO_2 or $MgAl_2O_4$ have been proposed.³ Among the different support materials, Al2O3 has received most attention owing to its low cost and high Tammann temperature of $\sim 885~^\circ \text{C.}^{1,4-6}$

The phase diagram of the Cu₂O–CuO–Al₂O₃ system shows that at temperatures exceeding 600 °C Al₂O₃ can form a solid solution with CuO, *viz.* the spinel (CuAl₂O₄) or delafossite (CuAlO₂).⁸ Chuang *et al.*⁹ and Imtiaz *et al.*¹⁰ demonstrated previously that CuO that is present in the spinel phase is fully reducible under CLC conditions. Therefore, the formation of $CuAl_2O_4$ does not reduce the oxygen carrying capacity of Al_2O_3 stabilized CuO. However, the formation of $CuAl_2O_4$ does affect negatively the CLOU performance of Al_2O_3 -stabilized CuO owing to the irreversible decomposition of $CuAl_2O_4$ to $CuAlO_2$ and the low oxygen equilibrium partial pressure of the $CuAl_2O_4$ -CuAlO₂ couple (Fig. 1).¹¹

A strategy to avoid the reaction between Al₂O₃ and transition metal oxides is doping with small quantities of alkali metal ions (e.g. Li⁺, Na⁺ or K⁺). For example, Houalla et al.¹² showed that Al₂O₃ and NiO did not form NiAl₂O₄ when doped with Li⁺. The inhibition of NiAl₂O₄ formation was explained by the preferential formation of an Al₂O₃-Li spinel. Using X-ray diffraction and differential thermal analysis, El-Shobaky et al.¹³ studied the solid-solid reaction between CuO (16.3 wt%) and Na^+ -doped Al₂O₃ in the temperature range 500–1000 °C. It was observed that the presence of Na⁺ prevented the reaction between CuO and Al₂O₃. This was attributed to the formation of a sodium aluminate phase at the surface of the Al₂O₃ grains. El-Shobaky et al.13 speculated that the sodium-aluminate phase limited the thermal diffusion of Cu²⁺ into the Al₂O₃ matrix, thus, preventing the formation of the copper aluminate spinel. In a previous study, Imtiaz et al.¹⁴ reported that the incorporation of K⁺ in the CuO-Al₂O₃ matrix did not only avoid the formation of the spinel CuAl₂O₄ but also reduced the propensity of the material to coke deposition.

However, the effect of alkali metals on the structural characteristics and cyclic redox performance of Al_2O_3 -stablized, CuO-based oxygen carriers is currently unknown. In addition, the reduction pathways of commercial, pure (*i.e.* unsupported) CuO have been probed only at low temperatures (200–300 °C).¹⁵ Thus, the aim of the present study is to investigate the influence of Na⁺ doping on the reduction, oxygen uncoupling and coke deposition characteristics of Al_2O_3 -stabilized, CuO-based oxygen carriers. To achieve a homogeneous distribution of the dopant (Na⁺), a sol–gel technique was utilized. The quantity of CuO in the oxygen carriers was fixed to 70 wt%. The structure and reduction pathways of Na⁺-doped, Al_2O_3 -stabilized, CuO were studied at 750 °C using X-ray absorption spectroscopy (XAS). In addition, the effect of Na⁺ doping on charge transport was also probed.

Experimental

Oxygen carrier synthesis

Na⁺-doped (1, 3 or 5 wt%), Al₂O₃-stabilized, CuO-based (70 wt% CuO) oxygen carriers were synthesized using a sol–gel technique. In a typical synthesis, first an appropriate amount of aluminium isopropoxide ((C_3H_7O)₃Al) was added to deionized water. The obtained mixture was heated to 75 °C and allowed to hydrolyse for 0.5 h under stirring. Subsequently, the solution was peptized with concentrated nitric acid. The molar ratio of Al³⁺:H₂O:H⁺ was 0.5:50:0.07.¹⁶ After peptization, condensation was allowed for 2 h at 90 °C. Subsequently, an aqueous solution containing appropriate amounts of copper(π) nitrate (Cu(NO₃)₂·2.5H₂O) and sodium hydroxide (NaOH) was added to the aluminium gel.

The mixture was heated under reflux for 12 h at 90 °C and subsequently dried at 100 °C. The final oxygen carrier was obtained by calcination in air in a muffle furnace at 900 °C for 2 h (temperature ramp 5 °C min⁻¹). Throughout this paper, the abbreviation CuAlNax, where x is the wt% of Na⁺, will be used to refer to the different oxygen carriers synthesized.

Characterization techniques

A Bruker D8 Advance diffractometer, equipped with a Lynx eye super speed detector, was used to analyse the composition and crystallinity of (i) freshly calcined, (ii) reduced and (iii) cycled oxygen carriers. The diffractometer was operated at 40 mA and 40 kV using Cu K_{α} radiation. Each sample was scanned in the range $2\theta = 20^{\circ} - 80^{\circ}$. The step size was 0.0275° and the scan time per step was 0.8 s. A scanning electron microscope (FEI Magellan 400 FEG) was used to characterize the surface morphology of the freshly calcined oxygen carriers. A double-sided carbon tape was used to attach samples of the oxygen carrier onto an aluminium holder. Prior to imaging, the samples were sputter coated with an approximately 3 nm thick layer of platinum. The surface area and pore volume of the synthesized oxygen carriers were determined using a Quantachrome NOVA 4000e analyser. Prior to the acquisition of the N_2 isotherms at -196 °C, each sample was degassed at 300 °C for approximately 3 h. The Brunauer et al.17 (BET) and the Barrett et al.¹⁸ (BJH) models were used to calculate, respectively, the surface area and the pore volume of the freshly calcined materials from the acquired isotherms.

The electrical conductivity and the activation energy for charge transport were determined by 4-point conductivity measurements on sintered pellets.^{19,20} The materials were first crushed and then pelletized *via* uniaxial (40 kN for 2 min) and isostatic (1000 kN for 2 min) pressing. The pellets were sintered in air ($P_{O_2} = 0.21$ bar) for 24 h at 1000 °C (the heating and cooling rate was 3 °C min⁻¹). The sintered pellets possessed a density of >95% of the theoretical bulk density. Platinum electrodes were applied in a 4-point electrode arrangement on both sides of the pellets (Heraeus 3605). The resistance of each pellet was measured in air as a function of temperature (from 25 °C to 950 °C using a heating and cooling rate of 3 °C min⁻¹) by applying a DC voltage of 1 V (Keithley 2601B multimeter). To ensure reproducibility, three heating and cooling cycles were performed.

To determine the oxygen uncoupling characteristics and the CuO content of the synthesized oxygen carriers, N₂-temperature programmed reduction (TPR) experiments were performed in a thermo-gravimetric analyser (TGA, Mettler Toledo TGA/DSC 1). In a typical experiment, ~15 mg of the oxygen carrier were heated from 25 °C to 1150 °C with a rate of 10 °C min⁻¹ under a flow of N₂ (25 mL min⁻¹). H₂- and CH₄-TPR were performed to probe, respectively, the reduction characteristics and the propensity for coke formation of the synthesized oxygen carrier was heated from 25 °C to 1000 °C at a rate of 10 °C min⁻¹. At the end of the temperature ramp the material was kept at 1000 °C for an additional 30 min. H₂-TPR and CH₄-TPR experiments were performed using 5 vol% H₂ in N₂ and 10 vol% CH₄ in N₂, respectively.

A Philips CM12 transmission electron microscope, operated at 100 kV, was used to image the carbon deposited.

Cyclic CLC and CLOU performance

The cyclic oxygen carrying capacity of the synthesized oxygen carriers was studied in a TGA at 900 °C. A mixture of 10 vol% CH₄ in N₂ was used for reduction (CLC), whereas a N₂ atmosphere was used for CLOU experiments. The reduced materials were re-oxidized with air. In each reaction segment, the flow rate of the gases was 25 mL min⁻¹ (25 °C and 1 bar). In addition, a constant N₂ flow of 25 mL min⁻¹ was used as purge flow over the micro-balance. In a typical experiment, a small quantity (~ 25 mg) of the oxygen carrier was placed in an alumina pan and heated from room temperature to 900 °C (10 °C min⁻¹) in a flow of air. After reaching the reaction temperature, a reduction step was performed. The duration of the reduction steps during CLC and CLOU experiments was 390 s and 600 s, respectively. Subsequently, the oxygen carrier was re-oxidized in air. The oxygen carriers were re-oxidized for 390 s and 600 s for CLC and CLOU operation, respectively. In CLC experiments a N_2 flow was used to purge the reaction chamber for 60 s between each reduction and oxidation segment. The reduction and oxidation cycle was repeated 20 times.

X-ray absorption spectroscopy

X-ray absorption spectroscopy (XAS) was performed at the Swiss-Norwegian beamline (BM01B) at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The measurements (Cu K-edge) were performed in transmission mode using a Si(111) double crystal monochromator. The energy was calibrated to the edge position of Cu foil (8979 eV). In order to study the local atomic order in the materials developed, extended X-ray absorption fine structure (EXAFS) data were collected (pellets using cellulose as binder). In situ X-ray absorption near edge structure (XANES) spectroscopy was performed to determine the reduction pathways of two representative oxygen carriers, viz. CuAlNa0 and CuAlNa5. A detailed description of the experimental set-up used for the XAS measurements is given in the ESI.† XAS data normalization and analysis were performed using the Athena and Artemis software packages (Demeter 0.9.20 software package).²¹ The structural parameters, such as interatomic distances, coordination number and the Debye-Waller factor, were obtained by nonlinear least-squares fitting of the acquired EXAFS data (k^3 -weighted, k-range 3–13 Å⁻¹).

Results

Characterization of the calcined oxygen carriers

Fig. 2 shows the X-ray diffractograms of the calcined oxygen carriers. CuAlNa0 and CuAlNa1 contained CuO and CuAl₂O₄, whereas CuAlNa3 and CuAlNa5 contained only CuO and NaAlO₂ (minor phase). The absence of CuAl₂O₄ in CuAlNa3 and CuAlNa5 is most likely due to Na⁺ suppressing the formation of the spinel. Due to the lack of diffraction peaks for Al_2O_3 in CuAlNa3 and CuAlNa5, Al_2O_3 is most likely present in an amorphous form.

Published on 31 March 2016. Downloaded by MIT Library on 6/18/2019 3:37:28 PM

Fig. 2 X-ray diffractograms of the calcined oxygen carriers. The following compounds were identified: (\blacksquare) CuO, (\blacklozenge) CuAl₂O₄ and (▲) NaAlO₂.

Table 1 Average crystallite size and the weight fraction of CuO and CuAl₂O₄ (Al₂O₃-free basis) in the calcined oxygen carriers. The average crystallite sizes were calculated from the (200) and (311) reflections of CuO and CuAl₂O₄, respectively. The weight fractions of the Cu²⁺-containing phases were determined from the XANES spectra using LCF

Material	CuO [nm]	CuAl ₂ O ₄ [nm]	CuO [—]	$CuAl_2O_4[]$
CuAlNa0 CuAlNa1 CuAlNa3 CuAlNa5	23 21 24 25	38 34 —	$egin{array}{c} 0.71 \pm 0.03 \ 0.75 \pm 0.03 \ 0.91 \pm 0.03 \ 0.98 \pm 0.02 \end{array}$	$egin{array}{c} 0.29 \pm 0.03 \ 0.25 \pm 0.03 \ 0.09 \pm 0.03 \ 0.02 \pm 0.02 \end{array}$

From Table 1 it can be seen that the average crystallite size of CuO in the synthesized oxygen carriers, estimated using the Scherrer equation,²² is ~23 nm (independent of the fraction of Na⁺).

XANES and EXAFS spectroscopy were performed to gain a better insight into the local Cu environment. Fig. 3(a) plots the Cu K-edge XANES spectra (acquired at room temperature) of the synthesized materials. For comparison, the Cu K-edge XANES

spectra of pure, *i.e.* unsupported CuO and CuAl₂O₄ are also shown in Fig. 3(a). The edge energies (defined as the maximum in the first derivative of $\mu(E)$ with respect to energy) of CuO and CuAl₂O₄ were determined as 8983.3 eV and 8986.1 eV, respectively, in agreement with literature.^{23,24} One of the features that clearly differentiates the XANES of CuO from that of CuAl₂O₄ is a shoulder in the edge step (absent for CuAl₂O₄). From the inset 3(a1) of Fig. 3(a) it can be seen that the shoulders in the edge step of CuAlNa0 and CuAlNa1 are less pronounced than for pure, i.e. unsupported CuO. This feature in the XANES of CuAlNa0 and CuAlNa1 can be attributed to the presence of a CuAl₂O₄ phase in these materials (as confirmed by XRD, Fig. 2). On the other hand, except for a minor reduction in the intensity of the white line (inset 3(a2)), the XANES spectra of CuAlNa3 and CuAlNa5 resemble very well the reference spectra of CuO. Linear combination fitting (LCF) of the XANES data (weight fractions of CuO and $CuAl_2O_4$ on an Al_2O_3 free basis, Table 1) shows that the quantity of CuAl₂O₄ in the materials decreased with increasing Na⁺ content.

The experimentally determined k^3 -weighted EXAFS functions of the synthesized oxygen carriers, CuO and CuAl₂O₄ are given in Fig. 3(b). The EXAFS functions of CuAlNa0, CuAlNa1 and CuAlNa3 show a reduction of the amplitude of the oscillations when compared to the CuO reference data (*e.g.* see inset 3(b1)). Moreover, the EXAFS spectra of CuAlNa0, CuAlNa1 and CuAlNa3 contain features that can be ascribed to CuAl₂O₄. These observations indicate that the (volume averaged) local environment of Cu in CuAlNa0, CuAlNa1 and CuAlNa3 is, due to the presence of CuAl₂O₄, somewhat different from pure CuO (in agreement with XRD and LCF analysis). On the other hand, the EXAFS data show that only CuAlNa5 has a similar signature as the CuO reference, indicating that 5 wt% Na⁺ prevented the reaction between CuO and Al₂O₃.

Scanning electron micrographs of the synthesized oxygen carriers are given in Fig. S3 (ESI[†]). The oxygen carriers CuAlNa0 and CuAlNa1 reveal a porous surface morphology

Fig. 3 Room temperature (a) XANES and (b) EXAFS spectra (k^3 -weighted) of calcined (—) CuAlNa0, (—) CuAlNa1, (—) CuAlNa3, (—) CuAlNa5, (—) CuO and (—) CuAl₂O₄ measured at the Cu K-edge.

Published on 31 March 2016. Downloaded by MIT Library on 6/18/2019 3:37:28 PM

(in combination with a comparatively high surface area, Table S2, ESI†). Increasing the Na⁺ content to 5 wt% led to a densification of the material's morphology. As expected, this change in morphology of CuAlNa3 and CuAlNa5 was accompanied by a decrease in surface area.

Temperature programmed reduction

To determine the influence of Na⁺ on the oxygen uncoupling characteristics of the synthesized oxygen carriers, N₂-TPR experiments were performed in a TGA. The normalized weight loss is plotted as a function of temperature for the different materials (Fig. 4). Fig. 4 confirms that the reduction of all oxygen carriers (defined as the temperature at which the oxygen carrier has lost 2% of the total weight loss) starts at ~770 °C, independent of the Na⁺ loading. As expected, the reduction of CuAlNa0, CuAlNa1 and CuAlNa3 occurred in two steps. In the first step (temperature range 750–890 °C), CuO is reduced to Cu₂O *via*:

$$4\text{CuO}(s) \rightarrow 2\text{Cu}_2\text{O}(s) + \text{O}_2(g) \tag{5}$$

The comparatively slow reduction of $CuAl_2O_4$ to $CuAlO_2$ occurs in the second step (temperature range 890–1050 °C), according to:

$$4\operatorname{CuAl}_{2}\operatorname{O}_{4}(s) \rightarrow 4\operatorname{CuAlO}_{2}(s) + 2\operatorname{Al}_{2}\operatorname{O}_{3}(s) + \operatorname{O}_{2}(g) \quad (6)$$

The (apparent) rate of CuAl₂O₄ reduction was slower in CuAlNa1 compared to CuAlNa0. Currently we cannot unequivocally explain the slower reduction of CuAl₂O₄ in CuAlNa1. XRD analysis of the reduced CuAlNa0, CuAlNa1 and CuAlNa3 confirmed the presence of Cu₂O, CuAlO₂ and Al₂O₃ (Fig. S4 of the ESI†). Due to the absence of CuAl₂O₄, the reduction of CuAlNa5 occurred in a single step. The X-ray diffractogram of reduced CuAlNa5 shows peaks due to Cu₂O and NaAlO₂ only. The CuO content of the synthesized oxygen carriers, as determined from N₂-TPR experiments, was close to the theoretically expected value of 70 wt%, see Table 2.

 H_2 -TPR experiments, Fig. 5(a), were performed to study the effect of Na⁺ on the reduction characteristics of the synthesized materials. The peak positions of the H_2 -TPR profiles are

Fig. 4 N₂-TPR profiles of the synthesized oxygen carriers: (—) CuAlNa0, (—) CuAlNa1, (—) CuAlNa3 and (—) CuAlNa5.

Table 2 CuO content of the oxygen carriers as determined from N2-TPR

Material	CuAlNa0	CuAlNa1	CuAlNa3	CuAlNa5
CuO content [wt%]	70.4	69.9	71.1	70.9

summarized in the inset of Fig. 5(a). For CuAlNa0 and CuAlNa1, the reduction started at \sim 245 °C, with peaks located at \sim 310 °C and ~ 322 °C, respectively. A second peak was located at ~415 °C and ~385 °C for, respectively, CuAlNa0 and CuAlNa1. The first peak can be assigned to the reduction of CuO to Cu, whereas the second peak corresponds to the reduction of CuAl₂O₄ to Cu and Al₂O₃. For CuAlNa3 and CuAlNa5, reduction started at ~ 280 °C with peaks located at ~ 332 °C and ~ 335 °C, respectively. The presence of only a single peak in the H2-TPR profiles of CuAlNa3 and CuAlNa5 is indicative of the absence of CuAl₂O₄ in these oxygen carriers. Overall, we observed that increasing Na⁺ loadings led to increasing reduction temperatures. X-ray diffractograms of the reduced materials confirmed the presence of Cu in the reduced oxygen carriers (Fig. S5, ESI⁺). In the case of CuAlNa5, also NaAlO₂ was identified in the reduced materials (minor phase).

The reduction and carbon deposition characteristics of the synthesized oxygen carriers were assessed further using CH₄-TPR. The CH₄-TPR profiles of the synthesized oxygen carriers are plotted in Fig. 5(b). The reduction of CuAlNa0 started at ~530 °C and was completed at ~710 °C. In contrast to the N₂-TPR and H₂-TPR measurements, we could not observe a separate reduction step for CuAl₂O₄ in the CH₄-TPR measurements. This indicates that using CH₄, CuO and CuAl₂O₄ are reduced simultaneously. The reduction of Na⁺ doped oxygen carriers started at ~560 °C irrespective of the Na⁺ content, *i.e.* at a higher temperature (+30 °C) compared to the undoped material. For CuAlNa0, a substantial increase in weight was observed for temperatures >750 °C. This is due to the deposition of coke *via* the CH₄ decomposition reaction, *viz*.:

$$CH_4(g) \rightarrow C(s) + H_2(g)$$
 (7)

On the other hand, CuAlNa1 revealed a comparatively low propensity to coke formation and compared to CuAlNa0, the onset of carbon deposition was shifted to higher temperatures. Transmission electron microscopy (Fig. S6, ESI†) revealed that the carbon deposited on CuAlNa0 and CuAlNa1 was in the form of filaments and whiskers. Importantly, no carbon deposition was observed in the transmission electron micrographs of CuAlNa3 and CuAlNa5; a very favourable characteristic for CLC. The increased resistance of Na⁺-doped oxygen carriers to carbon formation is attributed to the ability of alkali metals to stabilize preferably CH_x -* species instead of C-* surface intermediates.^{25,26} The X-ray diffractograms of the CH₄-reduced oxygen carriers showed peaks due to Cu (Fig. S7, ESI†). For CuAlNa5, Bragg reflections due to NaAlO₂ were also identified.

CLC and CLOU performance

The cyclic CLOU and CLC performance of the synthesized oxygen carriers was evaluated in a TGA at 900 $^\circ$ C. The normalized oxygen

carrying capacity defined as

Normalized oxygen carrying capacity = $\frac{\text{measured weight loss}}{\text{theoretical weight loss}}$ (8)

is plotted in Fig. 6(a) (CLOU) and (b) (CLC) as a function of cycle number. Under CLOU conditions the normalized oxygen carrying capacity of CuAlNa0 and CuAlNa1 decreased with cycle number. This behaviour is due to the slow oxidation kinetics of CuAlO₂ back to CuAl₂O₄.⁴ Over the 20 cycles tested a $\sim 16\%$ decrease in the oxygen carrying capacity was observed for CuAlNa0 and CuAlNa1. Doping the oxygen carrier with 1 wt% Na⁺ did not prevent the formation of a solid solution between CuO and Al₂O₃ (as confirmed by XRD and XAS). Thus, the CLOU performances of CuAlNa0 and CuAlNa1 are very similar. In the X-ray diffractogram of cycled (oxidized state) CuAlNa0 and CuAlNa1, CuO, CuAlO2 and Al2O3 were identified (Fig. S8, ESI[†]). On the other hand, for CuAlNa3 and CuAlNa5 the oxygen carrying capacity is only reduced by $\sim 3\%$ over the first four cycles. From the fifth cycle onwards, the oxygen carrying capacity of CuAlNa3 remained stable, reaching 97% of the theoretically predicted oxygen carrying capacity of the material.

The X-ray diffractogram of cycled CuAlNa3 (Fig. S8, ESI⁺) showed weak peaks due to CuAl₂O₄ along with CuO and NaAlO₂. This confirms (in line with XAS data) that doping CuO-Al₂O₃ with 3 wt% Na⁺ is not sufficient to completely avoid the formation of a solid solution between CuO and Al₂O₃. In the case of CuAlNa5, the normalized oxygen carrying capacity reached 100% of the theoretically predicted oxygen carrying capacity in the ninth cycle and remained stable for the subsequent cycles. This implies a fully reversible reduction-oxidation of the CuO-Cu2O couple. The X-ray diffractogram of cycled (oxidized state) CuAlNa5 showed peaks due to CuO and NaAlO₂ only, i.e. the spinel CuAl2O4 is not present in CuAlNa5. The slight drop in the oxygen carrying capacity during the first five cycles is probably due to some small changes in the kinetics of the oxidation reaction over the initial CLOU cycles, as shown in Fig. S9 (ESI[†]).

Turning to the CLC performance of the synthesized oxygen carriers, a gradual decrease in the normalized oxygen carrying capacity was observed for CuAlNa0 (Fig. 6(b)). On the other hand, all Na⁺ doped oxygen carriers showed stable oxygen carrying capacities close to 1 over the 20 redox cycles tested. The X-ray diffractograms of cycled (oxidized state) CuAlNa0 and

Fig. 6 Normalized oxygen carrying capacity of the oxygen carriers synthesized, as determined in a TGA at 900 °C under (a) CLOU and (b) CLC conditions: (\blacklozenge) CuAlNa1, (\blacksquare) CuAlNa1, (\blacktriangle) CuAlNa3 and (\circlearrowright) CuAlNa5.

Fig. 7 Normalized oxygen carrying capacity of CuAlNa5, as determined in a TGA at 900 $^\circ$ C under (\blacksquare) CLC and (\Box) CLOU conditions.

CuAlNa1, see Fig. S10 (ESI[†]), showed reflections due to CuO and CuAl₂O₄. On the other hand, the XRD data of CuAlNa3 and CuAlNa5 XRD showed only peaks due to CuO and NaAlO₂. It should be noted that CuAl₂O₄ is fully reducible under CLC conditions and does not reduce the oxygen carrying capacity of CuAlNa0.^{10,14} On the other hand, the temporally resolved mass loss profiles of CuAlNa0 (Fig. S11, ESI[†]) reveal that the rate of oxidation of CuAlNa0 decreased with cycle number, leading in turn to a decreasing oxygen carrying capacity with cycle number (the oxidation time was fixed to 390 s). In contrast, all Na⁺ doped oxygen carriers not only possessed higher oxidation rates (compared to undoped material) but also maintained their high oxidation rates over the 20 cycles tested. Therefore, CuAlNa1, despite containing CuAl₂O₄, showed a stable cyclic oxygen carrying capacity under CLC conditions.

The long term redox stability of CuAlNa5 was evaluated further in a TGA at 900 °C for 100 CLC and CLOU cycles. Fig. 7 plots the normalized oxygen carrying capacity of CuAlNa5 under both CLC and CLOU conditions as a function of cycle number. Under both CLC and CLOU conditions CuAlNa5 showed stable oxygen carrying capacities close to 1 over the 100 redox cycles tested, indicating that there was no sodium leaching at the high operating temperatures. Even after 100 cycle, we could not observe $CuAl_2O_4$ or $CuAlO_2$ in the X-ray diffractograms (Fig. S12, ESI[†]) of cycled (oxidized state) CuAlNa5, confirming further the long term stability of Na⁺-doped and Al_2O_3 -stabilized CuO.

In situ XANES spectroscopy

In situ XANES spectroscopy was performed to investigate the reduction pathways of undoped and Na^+ -doped (5 wt%), Al₂O₃-stabilized CuO at 750 °C. In total three redox cycles were performed for each material. Fig. 8(a) and (b) show the temporal changes of the Cu K-edge XANES spectra of, respectively, CuAlNa0 and CuAlNa5 (first reduction step using 5 vol% H₂ in He). Each spectrum plotted was acquired in He after a 5 s pulse of the reducing gas was released into the bed. Fig. 8 reveals that at 750 °C the reduction of the oxygen carriers commenced with the first H₂ pulse, *i.e.* an induction period was not observed. The absence of an induction period at 750 $^\circ\mathrm{C}$ is most likely due to the high thermal disorder in the materials as confirmed by the EXAFS spectra of CuAlNa0 and CuAlNa5 (Fig. S13 of the ESI[†]). Rodriguez et al.²⁷ argued that the occurrence of an induction period is related to the formation of defect sites on the metal oxide surface. These active sites have a high activity for the dissociation of H₂, but have, however, only been observed at low temperatures, *i.e.* $T < 310 \,^{\circ}\text{C}$.²⁷ For example, the in situ XAS measurements of Kim et al.15 showed an induction period in the temperature range 250-300 °C (commercial, pure CuO powder; 5 vol% H₂ in He with a flow rate >15 mL min⁻¹). Kim et al.¹⁵ also reported that the duration of the induction period decreased with increasing temperature.

The reduction pathways of CuAlNa0 and CuAlNa5 (Fig. 9(a) and (b), respectively) were determined using LCF of the acquired XANES data. Fig. 9 confirms that the reduction of both oxygen

Fig. 8 Time-resolved (150 s) Cu K-edge XANES spectra during reduction (5 vol% H_2 in He) of (a) CuAlNa0 and (b) CuAlNa5 at 750 °C. The red (—) and blue (—) lines correspond to the initial and final states, respectively.

Fig. 9 Weight fractions of CuO ($-\Box -$), CuAl₂O₄ ($-\bigcirc -$), Cu₂O ($-\Diamond -$) and Cu ($-\triangle -$) during the reduction of (a) CuAlNa0 and (b) CuAlNa5 using linear combination fitting of the acquired Cu K-edge XANES data. The reduction was performed at 750 °C using 5 s pulses of 5 vol% H₂ and 95 vol% He. 30 H₂ pulses were used in total.

carriers proceeds via the Cu₂O intermediate. The transition though the Cu₂O intermediate phase during reduction was supported further by principal component analysis (PCA). PCA of the recorded XANES data of CuAlNa0 and CuAlNa5 confirmed that all spectra could be reconstructed when using the four reference compounds CuO, CuAl₂O₄, Cu₂O and Cu. Using DFT, Kim et al.¹⁵ showed that under reducing conditions CuO can reach metastable states that possess a large number of oxygen vacancies. A transition from these metastable states to Cu₂O is associated with large variations in the cell parameters of CuO, whereas a very small amount of energy (total energy of unit cell calculated using DFT) is released during the transition from metastable CuO (CuO with large number of oxygen vacancies) to Cu₂O. Consequently, Kim et al.¹⁵ proposed that Cu₂O intermediates are only formed for slow reduction rates. On the other hand, under fast oxygen removal conditions the following transitions CuO \rightarrow metastable CuO \rightarrow Cu are favored energetically. We speculate that in the present work, the use of H₂ pulses (simulating a slow reduction) has allowed the formation of the Cu₂O intermediate during reduction. We did not observe, within the temporal resolution of the XAS spectrometer, the formation of the Cu₂O intermediate when a continuous flow of 25 mL min⁻¹ of 5 vol% H_2 in He was used for reduction (simulating a fast reduction).

The *in situ* XAS results plotted in Fig. 9(a) also show that in the first reduction segment of CuAlNa0, CuO and $CuAl_2O_4$ were reduced simultaneously to Cu_2O . The reduction of CuO and

 $CuAl_2O_4$ to Cu_2O was completed within the first 60 s. The further reduction of Cu_2O to Cu started after 20 s. At the end of the reduction step (150 s), the material still contained ~15 wt% Cu_2O , indicative of comparatively slow reduction rate for Cu_2O .

Nonetheless, XANES confirmed that CuO that is in a solid solution with Al_2O_3 is fully reducible to Cu *via* the Cu₂O intermediate. Thus, the formation of CuAl₂O₄ does not reduce the oxygen carrying capacity of the synthesized oxygen carriers. The composition of CuAlNa0 at the end of the first redox cycle (*i.e.* after re-oxidation with 5 vol% O₂ in He) was 62.5 wt% CuO, 21.0 wt% Cu₂O and 16.5 wt% CuAl₂O₄. The incomplete oxidation of Cu₂O to CuO within the fixed oxidation time is due to the sluggish oxidation kinetics of the Cu(1)–Cu(11) transition.²⁸ In the reduction of CuO and CuAl₂O₄ was completed within 20 seconds, *i.e.* three times faster when compared to the first cycle. Similarly, the (apparent) rate of reduction of Cu₂O was fully reduced to Cu in the third cycle.

For CuAlNa5, only CuO was identified in the fresh and re-oxidized materials. In the first 15 s of the reduction segment of the first cycle, CuO was reduced primarily to Cu₂O; only a minor quantity of Cu was detected. After 15 s, the fraction of Cu started to increase gradually. The reduction of CuO and Cu₂O was completed within 45 s and 90 s, respectively. Here, the apparent rate of reduction of CuO and Cu₂O was again found to increase with cycle number. For example, in the second and third cycle, Cu occurred already after the first H_2 pulse (5 s). Furthermore, we observed that for CuAlNa5 the quantity of Cu₂O formed during reduction decreases with increasing cycle number. From Fig. 9(a) and (b) it is evident that the reduction kinetics of CuAlNa5 are faster compared to CuAlNa0. The influence of Na⁺ on the reduction pathways and kinetics will be discussed in detail further below.

To explain the increase in the reduction kinetics with cycle number, room temperature EXAFS data of fresh and cycled CuAlNa5 were recorded. Compared to fresh CuAlNa5, the Fourier transformed EXAFS function of cycled CuAlNa5 shows an appreciably reduced height of the peaks due to the first and second coordination spheres (Fig. S14, ESI†), indicative of an increasing defect structure in CuO with cycle number. Fitting of the first shell of cycled CuAlNa5 shows an increase in the Debye–Waller factor and a decrease in the Cu–O coordination number compared to fresh CuAlNa5 (Table S4, ESI†).

Conductivity measurements

Using DFT calculations, Li *et al.*^{29,30} argued that the redox performance of transition metal oxides depends critically on the activation energy for the counter-current conduction of ions and electrons through the oxygen carrier. However, there is currently very little experimental evidence available to support this modelling result. In order to investigate the influence of Na⁺ doping on the activation energy for charge transport 4-point electrical conductivity measurements were performed. In Fig. 10(a) the measured resistivity of CuAlNa0 and CuAlNa5 is plotted as a function of temperature. CuAlNa5 has a lower resistivity than CuAlNa0 and the resistivity decreases with increasing temperature. The resistivity data was further analysed by fitting the following Arrhenius relationship

$$\sigma = \frac{\sigma_0}{T} \exp\left(-\frac{E_a}{kT}\right) \tag{9}$$

where, σ_0 , E_a and k are, respectively, a proportionality constant, the activation energy for charge conduction and the Boltzmann constant. Plotting $\ln(\sigma T)$ as a function of 1/T yielded two distinct

regions (Fig. S15, ESI⁺). Thus, the low and high temperature regimes were fitted by separate activation energies. For temperatures <600 °C, the activation energy for charge transport in CuAlNa0 and CuAlNa5 was determined as 0.152 eV and 0.098 eV, respectively (see Fig. 10(b)). At ~ 600 °C, an increase in activation energy is observed, indicative of a change in the charge transport mechanism. For temperatures exceeding 600 °C, an activation energy of 0.448 and 0.405 eV was determined for CuAlNa0 and CuAlNa5, respectively. It is worth noting here that CuO is a p-type semiconductor.³¹ Jeong and Choi³² showed that conduction at low temperature is due to the hopping of charge carriers in metal deficient CuO, *i.e.* $Cu_{1-\nu}O$. Using 4-point conductivity measurements, Jeong and Choi³² determined the activation energy for charge carrier hopping as 0.1 ± 0.01 eV which is in good agreement with the values obtained here (for T < 600 °C). The high temperature region gives the intrinsic conductivity of the material. In the literature the activation energy for charge transport through unsupported CuO at high temperatures (for T > 600 °C) was determined as 0.7 \pm 0.04 eV. This value is slightly higher than the one obtained from our measurements. The difference can most likely be attributed to morphological difference between commercial CuO and the material synthesized by us.32

Discussion

Effect of Na^+ on the morphological properties of Al_2O_3 -stabilized CuO

We observe that the average crystallite size of CuO in the synthesized oxygen carriers is not affected by Na^+ doping (Table 1). This implies that Na^+ doping has no pronounced solute drag or strain effect on the crystallite size development of CuO.³³ On the other hand, Na^+ doping significantly modifies the surface morphology of the oxygen carriers synthesized (Fig. S3, ESI†). Based on visual inspection of the electron micrographs, the sintering tendency of the grains was found to increase with increasing Na^+ content. It has been reported

Fig. 10 (a) Resistivity as a function of temperature for CuAlNa0 (—) and CuAlNa5 (—); (b) activation energy for charge transport for CuAlNa0 (—) and CuAlNa5 (—).

that the addition of alkali metals, *e.g.* Li, to metal oxides, *e.g.* ceria, can increase sintering through an increased atomic mobility at the grain boundaries.³⁴

Influence of Na⁺ on reduction kinetics and charge transport characteristics

From in situ XANES spectroscopy results (Fig. 9) it is evident that the (apparent) rate of reduction of CuAlNa5 is appreciably faster when compared to CuAlNa0, albeit the same reduction pathway was followed, viz. CuO \rightarrow Cu₂O \rightarrow Cu. As the oxygen carrier CuAlNa5 has a smaller surface area than CuAlNa0 (Table S2, ESI[†]) the faster reduction kinetics of CuAlNa5 cannot be explained by surface area effects. Thus, we attribute the fast reduction kinetics of CuAlNa5 to Na⁺ induced defect structures. Owing to differences in the oxidation states and ionic radii of Cu ions (0.73 Å) and Na ions (1.02 Å), doping Al₂O₃-stabilized CuO with Na⁺ creates aliovalent substitution defects in the oxygen carrier.35 Aliovalent substitution defects lower the positive charge within the oxygen carrier, therefore, oxygen vacancies or holes are generated as a charge compensation mechanism to maintain the overall charge neutrality. These oxygen vacancies or holes facilitate the transport of oxygen (O^{2-}) and electronic carriers during redox reactions. Comparing the electrical transport characteristics of Na⁺ doped CuO (CuAlNa5) and undoped CuO (CuAlNa0), it is clear that Na⁺ doping increases the reduction kinetics of CuO by (i) lowering the activation energy for charge transport by ~ 0.05 eV and (ii) increasing the overall conductivity by a factor of 2. We ascribe the lowering of the activation energy for charge transport to Na⁺ induced modifications in the electronic structure of CuO in line with XANES data and the absence of a spinel phase in CuAlNa5.

Influence of cycle number on the reduction kinetics

Fig. 9 shows that the reduction kinetics of both CuAlNa0 and CuAlNa5 increase with cycle number. This observation is consistent with the TGA and fluidized bed measurements of Imtiaz *et al.*^{10,11} that also showed an increasing reduction rate of Al₂O₃-stabilized CuO with cycle number. The Fourier transformed EXAFS functions of fresh and cycled CuAlNa5 (Fig. S14 and Table S4, ESI†) revealed that the number of defects (*e.g.* oxygen vacancies) in the CuO structure increase with number of repeated redox cycles resulting in an increasing distortion of the local atomic order. We believe that the increasing structural disorder of CuO with cycle number facilitates the transport of oxygen ions during reduction, which in turn leads to faster reduction kinetics.

Relation between reduction kinetics and pathways

The quantity of Cu₂O formed during the reduction of CuAlNa5 was found to decrease with increasing cycle number (*in situ* XAS measurements, Fig. 9(b)). The decreasing quantity of Cu₂O with cycle number suggests a change in the reduction pathway from a sequential (CuO \rightarrow Cu₂O \rightarrow Cu) to a direct transition (CuO \rightarrow Cu). Indeed, it is conceivable that the increasing (apparent) reduction kinetics with cycle number as discussed above, are a direct consequence of this change in reduction

pathway with cycle number. This observation is an agreement with the report of Kim *et al.*¹⁵ that showed that the reduction kinetics of pure CuO plays an important role for the reduction pathway. The sequential reduction of CuO occurs only under slow oxygen removal conditions. Therefore, an increasing rate of reduction with cycle number (as observed here) would favour the CuO \rightarrow Cu transition and change the reduction pathway from sequential to direct. The change of the reduction pathway of CuO would have important consequences for the oxidation mechanism of gaseous hydrocarbons. In the case of a sequential reduction pathway the reaction between CH₄ and CuO proceeds with both the lattice oxygen of CuO and molecular oxygen released *via* the CuO \rightarrow Cu₂O transition. For the direct reduction of CuO, only lattice oxygen will be available for the oxidation of CH₄.

Conclusions

In this work, we probe and characterize in detail the effect of Na⁺ doping on the local structure, electronic properties and cyclic redox characteristics of Al₂O₃-stabilized CuO. Using a combination of XAS, XRD and conductivity measurements we could demonstrate that the improved redox performance of Na⁺ doped oxygen carriers under CLC conditions is due to Na⁺ induced changes in the electronic structure of CuO and the suppression of the formation of a spinel phase. These structural changes lead to enhanced electronic transport kinetics possibly due to the generation of oxygen vacancies compensating the lower charge of Na⁺ when compared to Cu²⁺. The absence of the CuAl₂O₄ phase leads to a high redox stability under CLOU conditions. Utilizing in situ XANES spectroscopy, we were able to show that the reduction of both undoped and doped CuO proceeds via the Cu₂O intermediate. The (apparent) rate of reduction increases with cycle number owing to an increasing structural disorder. As a consequence, with cycle number the reduction pathway changes from sequential (CuO \rightarrow Cu₂O \rightarrow Cu) to a direct CuO \rightarrow Cu transition.

Acknowledgements

We are grateful to the Swiss National Science Foundation (SNF) (Project 406640_13670011) for financial support. We also thank Mrs Lydia Zehnder for her help with the XRD analysis and the Scientific Centre for Optical and Electron Microscopy (ScopeM) for providing access to and training on scanning and transmission electron microscopes. We acknowledge SNBL and ESRF for the provision of beamtimes.

Notes and references

- 1 Q. Imtiaz, D. Hosseini and C. R. Muller, *Energy Technol.*, 2013, 1, 633–647.
- 2 R. K. Lyon and J. A. Cole, *Combust. Flame*, 2000, **121**, 249–261.

- 3 P. Gayan, I. Adanez-Rubio, A. Abad, L. F. de Diego, F. Garcia-Labiano and J. Adanez, *Fuel*, 2012, **96**, 226–238.
- 4 M. Arjmand, A. M. Azad, H. Leion, T. Mattisson and A. Lyngfelt, *Ind. Eng. Chem. Res.*, 2012, **51**, 13924–13934.
- 5 M. M. Hossain and H. I. de Lasa, *Chem. Eng. Sci.*, 2008, **63**, 4433-4451.
- 6 J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan and L. F. de Diego, *Prog. Energy Combust. Sci.*, 2012, **38**, 215–282.
- 7 I. Barin and O. Knacke, *Thermochemical properties of inorganic substances*, Springer-Verlag, Berlin, New York, 1973.
- 8 K. T. Jacob and C. B. Alcock, J. Am. Ceram. Soc., 1975, 58, 192–195.
- 9 S. Y. Chuang, J. S. Dennis, A. N. Hayhurst and S. A. Scott, *Combust. Flame*, 2008, **154**, 109–121.
- 10 Q. Imtiaz, A. M. Kierzkowska and C. R. Muller, *Chem-SusChem*, 2012, **5**, 1610–1618.
- 11 Q. Imtiaz, M. Broda and C. R. Muller, *Appl. Energy*, 2014, 119, 557–565.
- 12 M. Houalla, J. Lemaitre and B. Delmon, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 1389–1400.
- 13 G. A. Elshobaky, T. Elnabarawy, G. A. Fagal and N. H. Amin, *Thermochim. Acta*, 1989, **141**, 195–203.
- 14 Q. Imtiaz, A. M. Kierzkowska, M. Broda and C. R. Muller, *Environ. Sci. Technol.*, 2012, 46, 3561–3566.
- 15 J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel and P. L. Lee, *J. Am. Chem. Soc.*, 2003, **125**, 10684–10692.
- 16 A. M. Kierzkowska, C. D. Bohn, S. A. Scott, J. P. Cleeton, J. S. Dennis and C. R. Muller, *Ind. Eng. Chem. Res.*, 2010, 49, 5383–5391.
- 17 S. Brunauer, P. H. Emmett and E. Teller, *J. Am. Chem. Soc.*, 1938, **60**, 309–319.
- 18 E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373–380.

- 19 J. L. M. Rupp, E. Fabbri, D. Marrocchelli, J. W. Han, D. Chen, E. Traversa, H. L. Tuller and B. Yildiz, *Adv. Funct. Mater.*, 2014, 24, 1562–1574.
- 20 A. A. Felix, J. L. M. Rupp, J. A. Varela and M. O. Orlandi, J. Appl. Phys., 2012, 112, 054512.
- 21 B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537–541.
- 22 A. L. Patterson, Phys. Rev., 1939, 56, 978-982.
- 23 E. Kleymenov, J. Sa, J. Abu-Dahrieh, D. Rooney, J. A. Van Bokhoven, E. Troussard, J. Szlachetko, O. V. Safonova and M. Nachtegaal, *Catal.: Sci. Technol.*, 2012, 2, 373–378.
- 24 V. V. Galvita, M. Filez, H. Poelman, V. Bliznuk and G. B. Marin, *Catal. Lett.*, 2014, 144, 32–43.
- 25 A. P. E. York, T. C. Xiao, M. L. H. Green and J. B. Claridge, *Catal. Rev.*, 2007, **49**, 511–560.
- 26 J. R. Rostrup-Nielsen, in *Catalysis: Science and Technology*, ed. J. R. Anderson and M. Boudart, Springer-Verlag, Berlin Heidelberg, vol. 5, ch. 1, 1984.
- 27 J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, J. Y. Kim and M. Perez, J. Am. Chem. Soc., 2002, 124, 346–354.
- 28 S. Y. Chuang, J. S. Dennis, A. N. Hayhurst and S. A. Scott, *Energy Fuels*, 2010, 24, 3917–3927.
- 29 F. X. Li, Z. C. Sun, S. W. Luo and L. S. Fan, *Energy Environ.* Sci., 2011, 4, 876–880.
- 30 F. X. Li, S. W. Luo, Z. C. Sun, X. G. Bao and L. S. Fan, *Energy Environ. Sci.*, 2011, 4, 3661–3667.
- 31 X. Y. Song, S. X. Sun, W. M. Zhang, H. Y. Yu and W. L. Fan, J. Phys. Chem. B, 2004, 108, 5200–5205.
- 32 Y. K. Jeong and G. M. Choi, J. Phys. Chem. Solids, 1996, 57, 81-84.
- 33 E. Zolotoyabko, J. L. M. Rupp and L. J. Gauckler, *Scr. Mater.*, 2012, **66**, 190–193.
- 34 J. D. Nicholas and L. C. De Jonghe, *Solid State Ionics*, 2007, 178, 1187–1194.
- 35 R. D. Shannon, Acta Crystallogr., 1976, 32, 751-767.